

© Copyright 2004, Applied Biosystems. All rights reserved.

For Research Use Only. Not for use in diagnostic procedures.

Information in this document is subject to change without notice. Applied Biosystems assumes no responsibility for any errors that may appear in this document. This document is believed to be complete and accurate at the time of publication. In no event shall Applied Biosystems be liable for incidental, special, multiple, or consequential damages in connection with or arising from the use of this document.

Notice to Purchaser:

Purchase of this software product alone does not imply any license under any process, instrument or other apparatus, system, composition, reagent or kit rights under patent claims owned or otherwise controlled by Applera Corporation, either expressly or by estoppel.

TRADEMARKS:

Applied Biosystems, Primer Express, ABI PRISM are registered trademarks and AB (Design), Applera, iScience, iScience (design), FAM, and TAMRA are trademarks of Applera Corporation or its subsidiaries in the U.S. and/or certain other countries.

TaqMan is a registered trademark of Roche Molecular Systems, Inc.

SYBR is a registered trademark of Molecular Probes, Inc.

Microsoft and Windows are registered trademarks of Microsoft Corporation.

All other trademarks are the sole property of their respective owners.

Part Number 4362460 Rev. B 1/2005

Contents

	Preface	vii
Chapter 1	Before You Begin Introduction Installing the Software Basics	1 2 4 6
Chapter 2	Designing Primers and Probes for Quantification Assay Overview Automatically Designing Primers and Probes Manually Designing Primers and Probes Automatically Designing Primers for SYBR® Green Dye Assays Manually Designing Primers for SYBR® Green Dye Assays	rs 7 8 9 13 19 23
Chapter 3	Designing Primers and Probes for Allelic Discrimination Assays Overview Automatically Designing Primers and Probes Manually Designing Primers and Probes	27 28 29 34
Chapter 4	Ordering Primers and Probes Overview Ordering Primers and Probes	39 40 40
	Index	43

Preface

How to Use This Guide

Purpose of This Guide	The <i>Primer Express® Software Version 3.0 Getting Started Guide</i> provides instructions for automating the primer and probe design for Quantification and Allelic Discrimination assays. It also explains how to manually annotate sequences and design customized primer/prober sets.								
Audience	This guide is written for principal investigators and laboratory staff with general knowledge of PCR and realtime-PCR terminologies and applications.								
Assumptions	This guide assumes that you have:								
	 A working knowledge of the assays Knowledge of primer and probe definitions Familiarity with Microsoft[®] Windows[®] XP operating systems 								
Text Conventions	 Bold indicates user action. For example: Type 0, then press Enter for each of the remaining fields. <i>Italic</i> text indicates new or important words and is also used for emphasis. For example: Before analyzing, <i>always</i> prepare fresh matrix. A right arrow bracket (>) separates successive commands you select from a drop-down or shortcut menu. For example: Select File > Open > Spot Set. 								
User Attention Words	Two user attention words appear in Applied Biosystems user documentation. Each word implies a particular level of observation or action as described below: Note: Provides information that may be of interest or help but is not critical to the use of the product.								
	IMPORTANT! Provides information that is necessary for proper instrument operation accurate chemistry kit use, safe use of a chemical, or proper software use.								

Examples of the user attention words appear below:

Note: The size of the column affects the run time.

IMPORTANT! To verify your client connection to the database, you need a valid Oracle user ID and password.

How to Obtain More Information

For more information about using Primer Express Software, refer to the comprehensive on line help system, which includes context-sensitive help and detailed procedures for performing tasks. The help system can be invoked by pressing the F1 key anywhere in the software.

Send Us Your Applied Biosystems welcomes your comments and suggestions for improving its user documents. You can e-mail your comments to:

techpubs@appliedbiosystems.com

How to Obtain Support

For the latest services and support information for all locations, go to **http://www.appliedbiosystems.com**, then click the link for **Support**.

At the Support page, you can:

- Access worldwide telephone and fax numbers to contact Applied Biosystems Technical Support and Sales facilities.
- Order Applied Biosystems user documents, MSDSs, certificates of analysis, and other related documents
- Search through frequently asked questions (FAQs)
- Submit a question directly to Technical Support
- Download PDF documents
- Obtain information about customer training
- · Download software updates and patches

Introduction

About Primer Express[®] Software Primer Express software is a primer and probe design tool made specifically for use with the following instruments:

- Applied Biosystems 7900HT Fast Real-Time PCR System
- Applied Biosystems 7500 Fast Real-Time PCR System
- Applied Biosystems 7500 Real-Time PCR System
- Applied Biosystems 7300 Real-Time PCR System

Primer Express software lets you independently design oligonucleotides (oligos) for PCR applications using a customized application specific document for each of the following assay types:

- Absolute/Relative Quantification
- Allelic Discrimination

When using Primer Express software, keep in mind the Applied Biosystems Rapid Assay Development Guidelines that contain the following important components:

- · Design of primers and probes using Primer Express software
- Selection of the appropriate reagent configuration (TaqMan[®] Universal PCR Master Mix or SYBR[®] Green PCR Master Mix)
- Use of universal thermal cycling parameters
- Use of default primer and probe concentrations (or optimizing, if necessary)

IMPORTANT! These components provide a rapid and reliable system for assay design and optimization only when used in their entirety. Due to the interdependence of many of the individual components, the system must be adopted as a whole in order to achieve the highest level of success.

Terms You Need	Allelic Discrimination Assay – An assay that discriminates between two alleles of
to Know	single nucleotide polymorphisms (SNPs). TaqMan [®] allelic discrimination assays use
	two probes specific for the two possible SNP variants.

Anti-Sense Strand – In double-stranded DNA, the strand that does not code for the RNA, and is not translated into proteins. Also referred to as anti-coding, negative, or reverse strand. The Primer Express Software designs primers and probes using the sense strand, not the anti-sense strand.

Document – In the Primer Express Software, a container used to hold sequences, generate candidate primer and probe designs, and order candidate primer and probe designs. The four document types available are TaqMan MGB Quantification, TaqMan Quantification, TaqMan MGB Allelic Discrimination, and TaqMan Allelic Discrimination.

Primer – A complementary oligonucleotide that initiates amplification of a target region of DNA. A forward primer anneals to the anti-sense strand. A reverse primer anneals to the sense strand.

Probe – A short oligonucleotide sequence that anneals specifically to a target sequence and serves as a fluorescence monitoring system for DNA amplification.

TaqMan[®] MGB Probe – An oligonucleotide with a reporter fluorescent dye attached to the 5' end and a non-fluorescent quencher attached to the 3' end. The probe is coupled with a minor groove binder (MGB), which increases its Tm. When the probe is cleaved by the DNA polymerase during the PCR reaction, reporter dye fluorescence increases proportional to the quantity of the target sequence.

TaqMan Probe – An oligonucleotide with a reporter fluorescent dye attached to the 5' end and a quencher fluorescent dye (usually TAMRATM) attached to the 3' end. When the probe is cleaved by the DNA polymerase during the PCR reaction, reporter dye fluorescence increases proportional to the quantity of the target sequence.

Quantification Assay – An assay that determines the relative or absolute quantity of target sequence within a sample. Relative quantification measures the change in the expression of the target gene in a test sample, relative to a calibrator sample. Absolute quantification uses a standard curve to calculate the quantity of an unknown target sequence.

Sense Strand – In double-stranded DNA, the strand that codes for the RNA that is translated into proteins. Also referred to as coding, forward, or positive strand. The Primer Express Software designs primers and probes using the sense strand.

System Requirements

The following table lists the hardware and software requirements and recommendations for installing and using Primer Express version 3.0 software.

Item	Minimum Requirements	Recommendations
Computer	 Intel[®] Pentium[®] III processor 540 MHz 	Intel [®] Pentium IV [®] processor faster than 2GHz
Monitor	17-inch monitor800 x 600 pixels resolution	 19-inch or larger monitor 1024 x 768 pixels or higher pixels resolution
Hard Drives	 256 MB RAM 20 MB free hard disk space	512 MB RAM10 GB EIDE hard drive
Network Adaptors	• 10/100 NIC with RWV (internal)	
Printer	Any PC-compatible printer.	
Operating System	 Windows[®] XP Professional, Service Pack 1 or later 	Windows [®] XP Professional, Service Pack 1 or later

Operating Systems Not Supported

- Microsoft[®] Windows[®] NT and 2000
- Macintosh[®]

Installing the Software

Installing Primer Express Software Version 3.0 **Note:** Applied Biosystems recommends that you disable any virus protection software enabled on your computer before installing Primer Express software version 3.0. You can enable the virus protection software after installation is complete.

- **1.** Insert the Primer Express 3.0 software CD into your CD drive.
- **2.** If the Primer Express Installer does not start automatically, in Windows Explorer, locate and then double-click the *Setup.exe* file. The Primer Express software displays the following window:

3. Click Install Primer Express[®] and follow the prompts to complete the installation.

IMPORTANT! Do not over write Primer Express Software version 2.0. The default installation location for Primer Express Software version 3.0 is in the Windows Start > All Programs > Applied Biosystems menu. If you change this default, verify that you are not installing it in the version 2.0 folder. You will need Primer Express Software version 2.0 to convert any older files. See "Converting Primer Express[®] Software Version 2.0 Documents" on page 5.

You can start using Primer Express software without restarting your computer.

To Uninstall Primer Express Software Version 3.0

To uninstall Primer Express Software:

1. On the taskbar, select **Start** > **Control Panel**. The Control Panel window opens.

1

- **2.** In the **Name** column, double-click **Add or Remove Programs**. The Add or Remove Programs window opens.
- **3.** In the **Currently installed programs** box, scroll down to, and then click **Primer Express 3.0**.
- 4. Click Change/Remove.
- 5. Follow the instructions on the Install Shield Wizard to remove all installed features.

Converting Primer Express[®] Software Version 2.0 Documents

In Primer Express software version 2.0, information about your oligonucleotide designs was stored in one or more archive files. In Primer Express software version 3.0, information about each oligonucleotide design is saved to its own separate *.pxd file.

If you would like to use Primer Express version 2.0 documents in version 3.0, you must first convert the version 2.0 archive files. Use the Primer Express version 2.0 Export command to convert documents within *.pcr files to individual *.pex documents. For more information, see *Primer Express Software v2.0 User's Manual* (PN 4329500).

You can open version 2.0 *.pex files without converting to *.pxd.

Note: If the "Limit 3' G+C" checkbox was unchecked in documents created in Primer Express Software version 2.0, this parameter (in the converted file) will be inconsistent with the setting from the version 2.0 document. Re-run the design with the "Max Primer 3' GCs" set to -1 to obtain consistent results.

Basics

Starting and	To start Primer Express software for the first time:									
Express Software	 On your desktop, select Start > Programs > Applied Biosystems > Primer Express > Primer Express 3.0. After you start Primer Express 3.0 for the first time, the registration dialog box opens. 									
	2. Enter your name, your organization, and your registration code, which is located on your Primer Express CD envelope and paper.									
	IMPORTANT! Be sure to store your Primer Express software registration code in a safe place. You will need it after the first installation and any re-installation. If it is lost, you must repurchase Primer Express Software.									
	3. Click OK.									
	To exit Primer Express software:									
	Select File > Exit.									
Using Online Help	The Primer Express Software Online Help provides context-sensitive help for most windows in the software. It also provides more general information about the software and procedures for common tasks.									
	Press F1 on the keyboard to display information about the window or dialog box you are viewing.									
	Select Help > Contents and Index to display the default help topic.									
	Refer to <i>Primer Express Software Version 3.0 Online Help</i> for more information on these Primer Express software functions:									
	Annotating Sequences									
	• Exporting									
	Printing									
	Using the Batch Process Tool									

Overview

About This Chapter This chapter provides information on using Primer Express Software Version 3.0 to automatically design primers and probes for quantification assays (including SYBR[®] Green Dye Assays) using default parameters. It also includes information on how to manually design primers and probes to obtain customized results.

Workflow

Figure 1. Quantification workflow

2

Automatically Designing Primers and Probes

This section describes automatically designing primers and probes for one sequence. You can automatically design quantification primers and probes for multiple sequences using the Batch Process Tool. For more information, see *Primer Express Software Version 3.0 Online Help*.

Creating a	To create a new quantification document:
Document	1. Select File > New. The New dialog box opens.
	2. In the Type list, select TaqMan [®] MGB Quantification or TaqMan [®] Quantification.
	3. Click OK.
	The document window opens to the Sequence tab.
Loading a DNA Sequence File	A sample sequence, <i>NM_002217</i> , is located in the sample sequences folder within the Primer Express folder. You can use this sample file to experiment with the software and design your primers and probes.
	To load a sequence file:
	1. Select Tools > Add DNA File ($\boxed{\mathbb{I}}$). Note you can also copy and paste or type

your sequence file in the Sequence tab.

- **2.** At the Add DNA File dialog box, navigate to and select the desired file. For information on the various file formats supported, see *Primer Express Software Version 3.0 Online Help*.
- **3.** Click **Add**. Primer Express software loads the nucleotide sequence from the file and displays the sense strand in the Sequence tab (see "Figure 2. Sequence tab" on page 10). The sequence serves as the starting point for primer and probe design.

Primer Express 3.0	_ 6
ile Edit View Tools Window Help	
Tankan® MCR Quantification # 1	
Sectored Development Development of the Sectored Development of the Sectored Development Deve	ک لک
and an end of the second s	
Tie Name NH-002217.gb U	
Length 4877 bp. Selection 1 to 1 🗖 Double Stranded	
СТСТАССТАС ТААЛОТТЕСА АЛТАТСЕВСЕ АТСЛАБОТТТ СССАТТАЛАВ ССАТАТАЛТ ТОЛАТАТТАЛ ТОЛОТТАЛА СОТОЛТОЛОВА АТСТТСЛОВА	100
GTCTTTACT GTTTGGACAG GAGATGCTGA TCCTAAGGTT GATCCGACTA CTGGAGAGA ATCTCAAGAG GATGATGCAG TTCCTTATGT ATATAAGTTA	200
AFGEGEGEGA ATAAGEGATA TGATTAITTT ACTECTGETE TECEGGAAAGGE CETTETGEG GAATAGGTAT TACAGGEGGA GATTCAGGAC	300
GTCTTCCAGT TCATGGTITA GCGATTAGAT CITATITGGA TGATTCITCT GATGATCAGT ITAGTITIGG TGITTCITAT GTAAACGCIT CACAGAAATG	400
GTITACTECA GATEGICETT TEACTICIES AATEGETAET SITECTETTE STACAACTES TAATTITECT ATTEATAATE ITETETATEC ATETTATIT	500
GGTACGACTG TIGCCCAAAC IGGTAGICCA ICITCITCITIC CIACICCCCC ITITGITAAG GGTGATTITC CIGITITATGI IGATITAGCG GCITCATCIT	600
CAGTTACGAT TAATTCGCTT CGTAATGCGA TTACTITGCA ACAGTGGTTT GAGAAGAGTG CTCGTTATGG AAGTAGATAT GTTGAATCTG TTCAAGGTCA	700
ITTIGGCETT CATCITEGTE ATTATEGTEC TEAGEGACEA ATETATITAE ETEGATETAA ETETTATET TETETTAATE ETETAATE EAATTEATET	800
ACAGATICAS TITUTUCULA AGGAAATUTT TUTGUTTATS CATTATUTAS AGATAUTAAA CATTUTUTTA UGAAGUUTTT TUTUGAGUAT GUTUTUTTA	900
FAGGTETTET TECAGETACA GEGGATETAA ETTATEAGEA AGGTETAGAG EGTEAGTEGT CAAGATETAG TEGTTATGAT TATTATEGEE ETACTITEGE	1000
TCATTTRGGA GAGCARCCTR TITATAATAA AGAGATTITAT TECCAATCAG ATACTETTAT GGATCCTAGT GGITCTBEGG TTAATGATGT GCCTITTBGT	1100
TATTANGAN UTTATUTA DATATATA AGAINTA AGAINTA AGAINTA AGAINTANA TATAAGAINA CARANANA AGAINTATA	1100
IAILARAVAGE DI ANGELOR DI ALUDI AL ANGELI GUA AUDI ALUDI ALITATI ANA ELITARAGUI AUDI ALUDI ALUD ALUDI ALUDI ALU	1200
	1300
INACTITIAL TITAATIATU GITUTATIAG GULTATIGUG GIUTATITUG TICLAGGITT AAGAAGGATT TAATATULUA AUGAGUGITGA ULUAGTAAAT	1400
schagaagag cascetaaga aaatattagt caatetaacg tagtegaatt gattaatact tittctgaagc gaaaatittg cattegetca cetaagtgac	1500
ATAATTITAG AGGAATTATG AGTITCGCGG AGAATGITGG TAGATTCIATA GGAAATTCTG TGAATTCIGT CGGAAGTGIT ATAGGAGATG GTCITAAAGG	1600
ITTTAATTCC ACTCAGTCTA TTTCCAGTGC TAAGCAGGCA AACCTTCTTA ATAATTTGCC TTTGCCTTCT TTAGATAATG TTTTAAATAT TGGAATGTTT	1700
36C6GTCTTE CTTCAGGCCT TCTTTCTTAT AGAGCTGCTA AAAAGCAAAA TAAGGTTATE CAGGATATTE CTAATAGGCA AATGGCTTTT CAGGAGCGAA	1800
IGTCTAGTAC GECTETTCEA CETCATETAE AGEACTTAAA GAAGECAEGT TTEAATCCEC TITTAECTIT AGETEGATCT ECTTATCTC CTCAAGETEC	1900
ITTITATTCT COTGTTAATC CTATGGAGTC AGGACTTAAT TOTGCGGATAT CAGTTGCGGA TAAAGTTTTT GATTATCAGC GTTTAGCTCA TGCTGATTIT	2000
CAGGGTCGTT TGAATTCTGC TATGAGTGTT GTTCAGTTGG CTTCTGCTGT TCAGGAATTAT AAAAGGAACT ATGGAAAGTT TGGTGAAGTT GCATATTGGT	2100
ITGATEGATA TECTEGECAGE TENTEGECTE CTATECTITE CTATECTITE AGAAAGCATE CAGITEGAAG AGEGETTEE GETECTAATE ETEGETATEC	2200
INTEGRAAG GERGEAAAG GERTEAATTE TAAGTETEEG AATATETETA GEACGEETET TEAGGEETAT AATETEEGAAT ATAATETEE GAAAGGAEG	2200
CONSIGNATION AND A CONTINUES AND	2300
	2400
ACCITIATE GARANTIGE TRAGETACE GARCEGARE CETTETATE RECEGENTE DE GEGENTE CETACIONE ACCIGENTE DE GEGENTE	2500
CUTETEET TEGATTATEA AGAIGETTIA GAGAITETAG ETEGTGA AGAGGETTIT TATETTIAE ETEEGAATAT TEGAGTTAAT TITEGAATE	2600
TATGGAGIT TITGTCATGG TTAGAGGACC CTGCTAATTA TGATGAAGITTA GAAGITTAG GITTATTGGA TCCTGAGAAA GITCAGATAA GAAAATCTAA	2700
JTTACAAAAA GATCAAAAAG AAGAGGTTTC TTCTGAGGAA AAATAGCGAG GGCTATATCC TCTTGGCTAT ATAGCCCGAG CGACAAAAA TATATAAAAC	2800
CTTAATGAAA GGATGTATIT CGATGGTICG TAGAAGACGT TIGAGAAGAA GAATAAGTAG AAGAATITIT AGAAGAACAG TAGCTAGAGT IGGTAGAAGG	2900
IGAAGGTETT TEEGEGEGE TATTAGATTE TAAGGEAAAA AAAATGEAET ATETTITTAA TEAGATAETE ETTAGAETEA TATETAATAT EEGITTATAT	3000
SCOTTTAACA CAAAGGAAAT CAGATTATAT GTGTACTAAT CCTATTATAC CTATAGTTCA ATATAAAGTT CCAGTTAAAT CTTCGTTAGA TGTTGTGGAT	3100
TEGETCTAMAET ITAGGETCTAM CITITAAGGET AATCIGITITT TITITCGAGAA GAATGITETT CETCETECTE TAAGTAATET AGATGAAGET ITTAGATITA	3200
TEAGCAACT GAAGCAACTT AGTTATITAT CTACTITIGA TETTGATGGT TATCATCAGG TGAAGCAGIT ITCTITICCT CITCCITIGTA GGAAATGITC	3300
TGAGTUTTE CAGAAGCUTT CTAAGGATTT AGCOUTTCAA GUTACTATUG AAGCGUGUTTU TOATGAGGAG AATUUTUTTI TGATTUUTAU TTATGATAAT	3400
TATTATTILE GEGATAATAT TITAGATTAT GATEATATTE GAETTITTE GAGETTITE EGEGETTE EGETTATE TEGATTATE CAATGAAA AGATTAAGT	3400
	3500
TITICALLY ACCOMMENTATION CONTROL AND A CONTROLLY AND A CONTROLLY AND A CONTROL AND A CONTROLLY	3600
Introvatova Antinicova covantonico antinicontri avananonita avoancinto vi nitoritokilo takokilokalo takokiloki	3700
ARIATITITI ALGIAGOLGE TARIGUAS ARAARAFITE TUTTGGALGE TOATTIGGALE TUTARET CITATITETE GAGAGGAG ARGARAGATT	3800
ITCAAGCIIT AGGITTAGAT TATTITITIT UTTATTTAAG GCAATTIUTT AAGACTAAGA GGATAGTITI AAATGGTTTT AGATATGGAT TTCCCCGTTA	3900
ITTTAAGGAT TTAITGAGGA AGITGGTITC AGAGGAITCG GAGITITGATA CTGAGIAITA TAATGCIITA AGGAAAAGGI TACTTAGTGI ATGTAGITAT	4000
TCGATGGTAA ATAAATATIT TACCTATITA GAATGCTTAG TTGAAGTTIT GCCAGTTITG AATITITCATG ATITATACCA GCGTGCGCTT AGGTATATGG	4100
ATCAATCTAT TCTTAAGCCG CATGCTAGTG ATCATGATGG AGAATATAAT ACTACTTAGG AGATCTGATG CATATGTTTT ATTATTCAAT TTATGATCGA	4200
AAGGCTCGGT CITATGGAGA TITGATCTCT ITTCCTTCAG GTGAGAAAGA GGCTGCTATT CGATGGTITA GAGATGTTGT GATGGATTCA GATTCTAAGA	4300
ATATTITIGCA TEGATATEET GAGGATITTG ATTITIGETA TATTGETTAT TITGATAAGG ATAAAGGAEG TITITATEET GIGGATGETG GGATAGTTAE	44111

Figure 2. Sequence tab

Note: If you select the Double-Stranded checkbox in the Sequence tab, both sense and anti-sense strands will be displayed. However, primers and probes are designed using the sense strand sequence only.

Finding Primers and Probes To find primers and probes: Select Tools > Find Primers/Probes ()). Primer Express software performs its calculations based on default parameter values. The status bar, located at the bottom of the window, displays information about the progress of the calculations as the software searches for primer/probe sets. If primers and probes are found, go to "Viewing Results" on page 11.

If primers and probes were not found:

If the software does not find primers and probes using default parameters, a pop-up will appear stating that no acceptable primer pairs were found and that you can see the Interim Results window. For more information on Interim Results, see *Primer Express Software Version 3.0 Online Help*.

At this point, you can:

- Manually design primers and probes as described in "Manually Designing Primers and Probes" on page 13.
- Design using the complementary sequence. For more information, see *Primer Express Software Version 3.0 Online Help.*
- **Viewing Results** Primer Express software automatically displays the Primers/Probes tab, if it finds primers and probes. The Primers/Probes tab displays the Candidate Primers & Probes table that contains information about the candidate primers, probes, and amplicons (see "Figure 3. Primers/Probes tab displaying candidate primers and probes"). The forward primer sequences are displayed using the left-to-right 5'-to-3' convention, and reverse primer sequences are displayed using the right-to-left 5'-to-3' convention.

II P	rime Eva	r Express 3	.0 Mindau Ha	.la													
rie D	Edit		/ In In V	ip I 🎟 I 🛌 I		A. 101		0 1 m	9								
	-								•								
	aqma	INU MGB QI	lantification	#1													
Seq	uenci	e Parameters	Filliels / Flub	es Urder													
	Can	fidate Primers i	Probes		105 1000)(0.000)(· · ·)(1)(· · ·	<u>)(</u>]
	#1	Fwd Start	Fwd Len	Fwd Im	Fwd %GC	Hev Start	Hev Len	Hev Im	Hev %LiC	Probe Start	Probe Le	Probe I m	Probe %GC	Amp Im	Amp %LiU	Amp Ia	Amp Len
	2	1430	30	58	30	1499	21	59	48	1464	14	69	36	74	34	54	70
	3	1429	31	59	32	1499	21	59	48	1463	15	69	33	74	35	54	71
	4	1429	31	59	32	1499	21	59	48	1464	14	69	36	74	35	54	71
	5	1428	32	59	31	1499	21	59	48	1463	15	69	33	74	35	54	72
	7	1420	33	59	30	1433	21	59	40	1463	15	69	33	74	34	54	73
	8	1427	33	59	30	1499	21	59	48	1464	14	69	36	74	34	54	73
	9	1426	29	59	31	1499	21	59	48	1463	15	69	33	73	34	54	74
	10	1426	29	59	31	1499	21	59	48	1464	14	69	36	73	34	54	74
	11	1425	30	59	30	1499	21	59	48	1463	15	69	33	73	33	54	75
	12	1425	30	59	30	1499	21	59	48	1464	14	69	36	73	33	54	75
	13	4049	23	58	30	4128	25	58	40	40/3	18	70	5U 47	75	39	55	80
	15	4049	23	58	30	4128	25	58	40	4074	17	69	53	75	39	55	80
	16	4049	23	58	30	4128	25	58	40	4074	18	69	50	75	39	55	80
	17	4049	23	58	30	4128	25	58	40	4075	16	70	56	75	39	55	80
	18	4049	23	58	30	4128	25	58	40	4075	17	70	53	75	39	55	80 -
	19	4049	23	58	30	4128	25	58	40	4076	15	69	60	75	39	55	80
	20	4049	23	56	30	4128	25	58	40	40/6	16	69	55	75	39	50	80
	21	4045	23	58	30	4120	25	58	40	4077	15	69	60	75	39	55	80
	23	4049	23	58	30	4128	25	58	40	4078	13	68	69	75	39	55	80
	24	4049	23	58	30	4128	25	58	40	4078	14	68	64	75	39	55	80
	25	4049	23	58	30	4128	25	58	40	4079	14	69	64	75	39	55	80
	26	4049	23	58	30	4128	25	58	40	4080	14	70	64	75	39	55	80
	27	4049	23	58	30	4128	25	58	40	4080	16	70	56	75	39	55	80
	20	4043	23	58	30	4123	26	59	38	4073	19	70	30 A7	75	10	55	81
	30	4049	23	58	30	4129	26	59	38	4074	17	69	53	75	38	55	81
	<															i j	>
	Loca	tion				141 <mark>25</mark> 95 1347 <mark>7</mark> 9											
	Seco	ondary Structur	e														
			Oligo				Lengt	h		Hairpin Self Di	mers Cross Dir	ners					
	0	Forward Prim	er				30		[Most Sta	able Struct	ure Found					
	0	Reverse Prim	er				21			GCAATGT	AACT 51						^
	O Probe 15																
	Forward Primer TCAATGTAACGTAGTGGAATTGATTAATAC																
	R	everse Primer	1000147004														
		LACTIALGIE	ALULAATULA														
	Pr	ODE	AATT														v
	Ľ	or unered clare	MALL							<							>
El) en	ulks fe	aund															

Figure 3. Primers/Probes tab displaying candidate primers and probes

Evaluating the candidate primer and probe sets:

The Location section of the Primers/Probes tab illustrates the location of the primers and probes within the sequence. The number above the line is the starting base; the number below the line is the ending base. Note that you can also see the corresponding location of a selected candidate Primer/Probe set in the Sequence tab.

In the Sequence tab, the probe will be highlighted in pink, the forward primer in blue, and the reverse primer in yellow. These default color designations can be changed by clicking **Tools > Options**. If you place your cursor over any of these annotations, a tool tip will appear showing the name of the annotation (Probe, Forward Primer, Reverse Primers) start and end locations, Tm and %GC.

As a general guideline, select the primer/probe sets with a low Penalty score and a low amplicon length (if the Penalty score and Amplicon Length fields are not displayed, scroll to the right in the table). However, all primer/probe sets generated using default parameters meet primer and probe guidelines. For more information regarding Penalty scores, see *Primer Express Software Version 3.0 Online Help*.

Note: After the software finds primers and probes, the sequence box is locked. To edit the sequence, click **1** to unlock.

run control samples to verify the performance of the selected primers and probes.

Saving the Document	Select File > Save As to save the document for future use.
Ordering Primers and Probes	To order your selected primers and probes, refer to Chapter 4, "Ordering Primers and Probes."
	IMPORTANT! Before running your samples, Applied Biosystems recommends that you

Manually Designing Primers and Probes

You may choose to manually design primers and probes for various reasons:

- Automated primer/probe design did not find primers and probes.
- To design a probe over an exon junction.
- To design a probe for DNA sequence homologs.
- To design primers and probes according to your own specifications.

Creating a
Quantification
DocumentCreate a Quantification document and load a sequence file as you would for automatic
primer/probe set design. See "Creating a Quantification Document" on page 9.DocumentDocument

Manually Designing the Probe

- **1.** Select a putative probe region containing at least 25 bases.
- **2.** Copy (**Ctrl+C**) the sequence.

IMPORTANT! The Primer Probe Test Tool eliminates non-ATCG bases. Before copying a sequence, change any non-ATCG bases, or select a different region of the sequence.

3. Select **Tools > Primer Probe Test Tool**. The Primer Probe Test Tool dialog box appears (see "Figure 4. Primer Probe Test Tool dialog box" on page 14).

See 1	'rimer	Express 3	.0														_ 0
File	Edit	View Tools	Window He	əlp													
						→ ← Ⅲ Ⅲ		🕐 🛒 A	8								
	aqMa	n® MGB Qi	antification	#1													
Se	quence	Parameters	Primers / Prob	oes Order													
	Candi	idate Primers I	k Probes														
	#	Fwd Start	Fwd Len	Fwd Tm	Fwd %G	C Rev Start	Rev Len	. Rev Tm	Rev %GC	Probe Start	Probe Le	Probe Tm	Probe %GC	Amp Tm	Amp %GC	Amp Ta	Amp Len
	2	1430 1430	30	58	30	1499	21	59	48	1463	15	69	33	74	34	54	70
	3	1429	31	59	32	1499	21	59	48	1463	15	69	33	74	35	54	71
	4	1429	31	59	32	1499	21	59	48	1464	14	69	36	74	35	54	71
	5	1428	32	59	31	1499	21	59	48	1463	15	69	33	74	35	54	72
	7	1427	33	59	30	1499	21	59	48	1464	15	69	33	74	34	54	73
	8	1427	33	59	30	1499	21	59	48	1464	14	69	36	74	34	54	73
	9	1426	29	59	31	💹 Primer Prot	e Test To	ol						×	34	54	74
	11	1425	29	59	30	Parameters									34	54	75
	12	1425	30	59	30	Dcournent Type:	TagMan®	MGB Quantificat	ion 💌 F	Parameter: Defa	ault	~	Browse		33	54	75
	13	4049	23	58	30										39	55	80
	14	4049	23	58	30	Primers and Pro	bes								39	55	80
	16	4045	23	58	30							Tm 260	Longth		39	55	80
	17	4049	23	58	30	Fwd F	Primer					0.0 0	. Lengar		39	55	80
	18	4049	23	58	30							Tm 260	Length		39	55	80
	19	4049	23	58	30	Revi	Primer					0.0 0	0		39	55	80
	20	4049	23	58	30							Tm %GC	Length		39	55	80
	22	4049	23	58	30	Probe	1 TC/	ATGTAACGTAG	TGGAATTGAT	TTAATAC		75.0 30	30		39	55	80
	23	4049	23	58	30							Tm %GC	Length		39	55	80
	24	4049	23	58	30	Probe	2					0.0 0	0		39	55	80
	25	4049	23	58	30	Trim									39	55	80
	27	4049	23	58	30										39	55	80
	28	4049	23	58	30	-Secondary Struc	ture								38	55	81
	29	4049	23	58	30	Or		[Harpin Self Di	mers Cross Di				38	55	81
	30	4049	23	108	30			Leng	pn		and a cross of				36	50	81
P	Locat	ion				Porward Pri	mer	0									
	LOCOL	2011				O Reverse Prir	ner	0									
						O Probe 1		30									
•	Seco	ndary Structur	e			O Probe 2		0									
			Oligo			Show Secondary Structure											
	0 F	onward Prim	ier														
	OF	everse Prim	er				21			GCAATGT	AACT 5'						^
	OP	robe					15	5		tii I	1111						
	For	ward Primer								LAGTEGAA	TTGATTAATA	C 3'					_
	T	AATGTAACG	TAGTGGAATT	GATTAATAC													
	Re	verse Primer															
	TC	ACTTACGTG	ACCEAATGEA														
	Pro	be															
	TC	TGAAGCGA4	AATT							<							×
	J										_	-					
50 //		and a second															

Figure 4. Primer Probe Test Tool dialog box

- **4.** From the Document Type drop down menu, select the desired document type. Verify that the Parameter box is set to **Default**. For more information about changing parameters, see *Primer Express Software Version 3.0 Online Help*.
- **5.** Paste (**Ctrl+V**) the putative sequence in the Probe 1 field. The Primer Probe Test Tool displays the Tm, %GC, and the oligonucleotide length to the right of the Probe 1 field.
- **6.** If the Tm is not between 68 °C to 70 °C, highlight a section of the sequence to view the corresponding Tm, %GC, and oligonucleotide length. Once the highlighted region results in the desired Tm, click on **Trim** to delete the non-highlighted bases.

Ensure the following guidelines are met (for more information on design guidelines, refer to *Primer Express Software Version 3.0 Online Help*):

- Amplicon Length 50 to 150 bases for optimum PCR efficiency.
- **Probe Length** 13 to 25 bases (13 to 30 bases if using conventional TaqMan probes)
- $\mathbf{Tm} 68 \,^{\circ}\mathbf{C}$ to 70 $^{\circ}\mathbf{C}$.
- % GC 30% to 80%.

• 5' end – Cannot be a G residue. A G residue adjacent to the reporter dye will quench the reporter fluorescence somewhat, even after cleavage.

Avoid the following motifs:

- **Repeating oligonucleotides** Avoid runs of identical nucleotides. If repeats are present, there must be fewer than four consecutive G residues.
- **Consecutive A residues** Avoid six consecutive A residues anywhere in the probe.
- **G residues on the 3' end** Avoid 5'-...GGG-MGB-3' or 5'-...GGAG-MGB-3'
- CC dinucleotides Avoid two or more CC dinucleotides in the middle of the probe (TaqMan MGB probes), which can sometimes reduce signal.
- **FAM[™]dye-labeled probes** If ordering FAM[™]-dye labeled probes, avoid a G in the second position on the 5' end.

For secondary structure design considerations, see *Primer Express Software Version* 3.0 Online Help.

Note: If you cannot achieve the recommended Tm, you can design using the complementary sequence. For more information, see *Primer Express Software Version 3.0 Online Help.*

- **7.** Once the correct Tm is achieved, return to the Sequence tab and highlight the sequence found in the Probe 1 field of the Primer Probe Test Tool. To manually design primers, go to "Manually Designing the Primers" on page 16.
- 8. To automatically find primers after manually designing the probe, select Edit > Annotate > Probe (III). The selected probe sequence text is displayed in green. For more information on annotating sequences, see *Primer Express Software Version 3.0 Online Help*.
- 9. Select Tools > Find Primers/Probes (). Primer Express software performs its calculations based on default parameter values. The status bar, located at the bottom of the window, displays information about the progress of the calculations as the software searches for primers based on the designed probe. If primers are found, go to "Viewing Results" on page 16.

If primers were not found:

If the software does not find primers using default parameters, a pop-up will appear stating that no acceptable primer pairs were found and that you can see the Interim Results window. For more information on Interim Results, see *Primer Express Software Version 3.0 Online Help*.

At this point, you can manually design primers described in "Manually Designing the Primers" on page 16.

Viewing Results

Primer Express software automatically displays the Primers/Probes tab, if it finds primers. The Primers/Probes tab displays the Candidate Primers & Probes table that contains information about the candidate primers, probes, and amplicons. The forward primer sequences are displayed using the left-to-right 5'-to-3' convention, and reverse primer sequences are displayed using the right-to-left 5'-to-3' convention.

Evaluating the candidate primer and probe sets:

The Location section of the Primers/Probes tab illustrates the location of the primers and probes within the sequence. The number above the line is the starting base; the number below the line is the ending base. Note that you can also see the corresponding location of a selected candidate Primer/Probe set in the Sequence tab.

In the Sequence tab, the probe will be highlighted in pink, the forward primer in blue, and the reverse primer in yellow. These default color designations can be changed by clicking **Tools > Options**. If you place your cursor over any of these annotations, a tool tip will appear showing the name of the annotation (Probe, Forward Primer, Reverse Primers) start and end locations, Tm and %GC.

As a general guideline, select the primer/probe sets with a low Penalty score and a low amplicon length (if the Penalty score and Amplicon Length fields are not displayed, scroll to the right in the table). However, all primer/probe sets generated using default parameters meet primer and probe guidelines. For more information regarding Penalty scores, see *Primer Express Software Version 3.0 Online Help*.

Note: After the software finds primers and probes, the sequence box is locked. To edit the sequence, click **(a)** to unlock.

Manually To design Designing the Primers 1. Select

To design the Forward Primer:

- **1.** Select a sequence (at least 25 bases) to the left of the probe. The sequence should be as close to the probe as possible without overlapping it.
- **2.** Copy (**Ctrl+C**) the sequence.

IMPORTANT! The Primer Probe Test Tool eliminates non-ATCG bases. Before copying a sequence, change any non-ATCG bases, or select a different region of the sequence.

3. On the Primer Probe Test Tool dialog box, paste (**Ctrl+V**) the sequence into the Fwd Primer field. The Primer Probe Test Tool displays the Tm, %GC, and the oligonucleotide length to the right of the Fwd Primer field.

4. If the Tm is not between 58 °C to 60 °C, highlight a section of the sequence to view the corresponding Tm, %GC, and oligonucleotide length as if those highlighted bases were deleted. Once the highlighted region results in the desired Tm, click on **Trim** to delete the non-highlighted bases.

Ensure the following guidelines are met (for more information on design guidelines, refer to *Primer Express Software Version 3.0 Online Help*):

- Amplicon Length 50 to 150 bases for optimum PCR efficiency.
- **Optimal Primer Length** 20 bases. Do not overlap primer and probe sequences.
- Tm 58 °C to 60 °C (**Optimal** Tm 59 °C).
- % GC 30% to 80%.
- **3' end** Make sure the last five nucleotides at the 3' end contain no more than two G + C residues.

Avoid the following motifs:

• **Repeating oligonucleotides** – Avoid runs of identical nucleotides. If repeats are present, there must be fewer than four consecutive G residues.

For secondary structure design considerations, see *Primer Express Software Version* 3.0 Online Help.

To design the Reverse Primer:

1. In the sequence tab, select a sequence (at least 25 bases) to the right of the probe. The sequence should be as close to the probe without overlapping it.

2. Select Edit > Copy Complement.

IMPORTANT! The Primer Probe Test Tool eliminates non-ATCG bases. Before copying a sequence, change any non-ATCG bases, or select a different region of the sequence.

- **3.** On the Primer Probe Test Tool dialog box, paste (**Ctrl+V**) the sequence into the Rev Primer field. The Primer Probe Test Tool displays the Tm, %GC, and the oligonucleotide length to the right of the Fwd Primer field.
- **4.** If the Tm is not between 58 °C to 60 °C, highlight a section of the sequence to view the corresponding Tm, %GC, and oligonucleotide length. Once the highlighted region results in the desired Tm, click on **Trim** to delete the non-highlighted bases. Be sure to keep the above guidelines in mind.

Note that you can further customize your primer and probe set by editing the default parameter values found under the Parameters tab. For more information on editing parameters, see *Primer Express 3.0 Software Online Help*.

Saving Primer and Probe Sequences Copy and paste the primer and probe sequences into a text document, then save for future reference.

Ordering Primers and Probes

To order your selected primer/probe set, refer to Chapter 4, "Ordering Primers and Probes."

IMPORTANT! Before running your samples, Applied Biosystems recommends that you run control samples to verify the performance of the selected primers and probes.

2

Automatically Designing Primers for SYBR[®] Green Dye Assays

Note: This procedure generates primers and TaqMan probes. However, only the primers need to be ordered for SYBR[®] Green Dye assays. If desired, you can save the probe sequence for future use in TaqMan assays.

Creating a	To create a new quantification document:
Document	1. Select File > New . The New dialog box opens.
	2. In the Type list, select TaqMan [®] MGB Quantification or TaqMan [®] Quantification.
	3. Click OK.
	The document window opens to the Sequence tab.
Loading a DNA Sequence File	A sample sequence <i>NM_002217</i> , is located in the sample sequences folder within the Primer Express folder. You can use this sample file to experiment with the software and design your primers.
	To load a sequence file:
	 Select Tools > Add DNA File (
	2. At the Add DNA File dialog box, navigate to and select the desired file. For information on the various file formats supported, see <i>Primer Express Software Version 3.0 Online Help</i> .
	3. Click Add . Primer Express software loads the nucleotide sequence from the file and displays the sense strand in the Sequence tab (see "Figure 5. Sequence tab" on page 20). The sequence serves as the starting point for primer design.

III Primer Express 3.0		
File Edit View Tools Window Help		
TauMan® MGB Quantification # 1		
Section 2010 Descenter Debas Debas		
Traditions Filings / Filin		
Tie Name NH-002217.gb Ma		
Length 4877 bp. Selection 1 to 1 🔲 Double Stranded		
∇		
		ليبيد
GTCTACCTAC TAAAGTTGCA AATTATC65C ATCAAGTTIT GCCATTAAGA GCATATAATT TGATATTTAA TGAGTATTAT CGTGATGAGA ATCTTCAGGA	100	^
GTCTTTACCT GTTTGGACAG GAGATGCTGA TCCTAAGGTT GATCCGACTA CTGGAGAAGA ATCTCAAGAG GATGATGCAG TTCCTTATGT ATATAAGTTA	200	
ANDESTEGCA ATAAGEGATA TGATTATITIT ACTICIGECTI TGCAGAAAGGE CETTETBTTG GAATAGETAT TACAGGTGGA GATTCAGGAC	300	
GICTICAGI TURGETIA GUGATIAGAT CITATITGGA TGATUTUT GAGATUGGI TIAGITITEG TGITUTUTAT GIAAGUGUT CACAGAATG	400	
GITTACIGCA GARGETESIT TEACHTCING AANGGETAST STICCTOITE STACAACTUG TAATTITECT ATTGATAATS ITGIGTATIC ATCTTATITT	500	
GETACGACTE TEGECCAAAC TEGETAGECCA TETETETET CTACTECECE TETETETAAG GETGATETE CEGETTATET TEATETAGEG GETCATETE	600	
CASTTACEAT TAATTCECTT CETAATECEA TTACTTTECA ACAGTEGTTT GAEAAGAGTE CTCETTATEG AAGTAGATAT GTTEAATCTE TTCAAGGTCA	700	
TITTGGGGTT CATCITGGTG ATTATCETGC TCAGCGACCA ATCTATTAG GTGGATCTAA GTCTTATGTT TCTGTTAATC CTGTAGTACA GAATTCATCT	800	
ACAGATTCAG TITUTCUTCA AGGAAATUTT TUTGUTTATG CATTATUTAC AGATAUTAAA CATITUTITTA CGAAGTUTIT TUTTGAGUAT GUTTITUTTA	900	
TAGGTETTET TTEAGETACA GEGGATITAA ETTATEAGEA AGGTTTAGAG EGTEAGTGET CAAGATITAG TEGTTATGAT TATTATTEGE ETAETTTEC	1000	
TCATTIGGGA GAGCAGECTG TITATAATAA AGAGATITAT TEECAATCAG ATACTGITAT GGATCETAGT GETTITEGGG TAATGATET GECTITTEGT	1100	
TATCAAGAGC GTTATGETGA GTATCGTTAT AAGCCTTCGA AGGTTACTGG ATTATTTAGA TCTAACGCTA CAGGTACTCT AGATTCTTGG CATTGTTCTC	1200	
AGAATITIGC GAATITACCT ACTITGAATG AGACTITIAT TCAGAGTAAT ACGCCGATAG ATAGAGCGIT AGCAGITCCT GATCAGCCIG ATITIATITG	1300	
TGACTITIAC TITAATTATC GITGTATTAG GCCTATGCCG GTGTATTCTG TTCCAGGTIT AAGAAGGATT TAATATCCCA ACGAGCGTGA CCCAGTAAAT	1400	
GCGAGAAGAG CAGCGTAAGA AAATATTAGT CAATGTAACG TAGTGGAATT GATTAATACT TITCIGAAGC GAAAATTIIG CATIGGGICA CGTAAGIGAC	1500	
ATAATITTAG AGGAATTATG AGTTTCGCGG AGAATGTTGG TAGATTCATA GGAAATTCTG TGAATTCTGT CGGAAGTGTT ATAGGAGATG GTCTTAAAGG	1600	
TITTAATTCC ACTCAGTCTA TITTCCAGTGC TAAGCAGGCA AACCITCITA ATAATTIGCC TITGCCITCI TIAGATAATG TITTAAATAT TGGAATGITI	1700	
GEGEGETETTE ETTEAGECET TETTETTAT AGAGETEETA AAAAGEAAAA TAAGETTATE CAGGATATTE ETAATAGEEA AATGEETTTE CAGGAGEGAA	1800	
TETETAGTAC GECTETTEGA CETCATETAG AGGACTTAAA GAAGGCAGET TTGAATECCEC TTTTAGETTT AGGTGGATET GETTETATEC CTEAAGGTGC	1900	
TITITATICT CUTGITAATC CTATGGAGTC AGGACTTAAT TUTGCGATAT CAGTIGUGGA TAAAGTITIT GATTATCAGU GITTAGUTCA TUCTGATITT	2000	
CAGGGTCGTT TGAATTCTGC TATGAGTGTT GTTCAGTGTGG CTTCTGCTGT TCAGGATTAT AAAAGGAACT ATGGAAAGTT TGGTGAAGTT GCATATTGGT	2100	
TEGATEGATA TECTEGCAAG TEGTEGCETE CTATECTITE CTATETETT AGAAAGCATE CAGETEGGAAG AGEGETETET GETEGTAATE CEGETAATEC	2200	
TETTECTAAG GETECTAAAG GETETAATTT TAAGTTTTEE AATATETETA ETAEGEETET TEAEGEETEAT AATTETAGAT ATAATETTTE GAAAGGATEG	2300	
AGAAGGTAAT GAAGTTTAGA ACGATTTATG ATGAGGAGGG TECTGETEET GTATGGAGT GTAAGGATGA AAGTETATGT TTGGETTATE AATGTAETGA	2400	
GACGTCTATT GAAAAATTGG TTAAGTTAGC GAATCAGAAT CCTTCTTATT TACATGCATT TGCTGGTGAT CCTACTCGTC AACCTGAATA TGGAGAGTGT	2500	
CETTETECTT TEGATTATEA AGATECTITA GAGATTETAG ETEGTEGTEA AGAGECTITT TATECTITAE ETEGEAATAT TEGAGTTAAT TITTEGAATE	2600	
CTATGGAGTT TTTGTCATGG TTAGAGGACC CTGCTAATTA TGATGAAGTT GAGAAGTTAG GTTTATTGGA TCCTGAGAAA GTTCAGATAA GAAAATCTAA	2700	
GTTACAAAAA GATCAAAAAG AAGAGGTTTC TTCTGAGGAA AAATAGCGAG GGCTATATCC TCTTGGCTAT ATAGCCCGAG CGACACAAAA TATATAAAAC	2800	
CITRARGAAA GGATGTATTT CGATGGTTCG TAGAAGACGT TTGAGAAGAA GAATAAGTAG AAGAATTTTT AGAAGAACAG TAGCTAGAGT TGGTAGAAGG	2900	
CGAAGGTCTT TTCGTGGTGG TATTAGATTT TAAGGCAAAA AAAATGGAGT ATCTTTTTAA TGAGATACTC CTTAGACTCA TATCTAATAT CCGTTTATAT	3000	
CCGTTTAACA CAAAGGAAAT CAGATTATAT GTGTACTAAT CCTATTATAC CTATAGTTCA ATATAAAGTT CCAGTTAAAA TCTTCGTTAGA TGTTGTGGAT	3100	
TGGTCTAAAT TTAGGTCTAA CTTTAGGGCT AATCTGTTTT TTTTCGAGAA GAATGTTGTT CGTCGTGCTG TAAGTAATGT AGATGAAGCT TTTAGATTTA	3200	
CTGAGGAACT GAAGGAAGTT AGTTATTTAT CTACTTTTGA TCTTGATGGT TATCATCAGG TGAAGGAGTT TTCTTTTCCT CTTCCTTGTA GGAAATGTTC	3300	
TGAGTGTTTE CAGAAGCGTT CTAAGGATTT AGCGGTTCAA GCTACTATGG AAGCGCGTTC TCATGAGGAG AATTCTGTTT TGATTCTTAC TTATGATAAT	3400	
GATCATTTAG GCGATAATAT TTTAGATTAT GATCATATTC GAGTTTTTCA GAAGCGTTTG CGTCGTTATG TGGATTATCA CTATGGCAAA AAGATTAAGT	3500	
TITTIGACTIT AGGAGAATAT GETGATAAGA AAGGTCETAT GCATTIGCAT ATGATTETIT TIGETIGGAA GCCGAAATCT GAGGAACAAT TAGAGCCETA	3600	
TITAGGAGGA AAGTATCGAA CGGATGTTCG ATATCGTTCT AGAAAGCTTA AGGAACTATG GAAATTTGGT TATGTTGATG TAGATGAAGC TACAGATGGT	3700	
ARTATITITA ATGTAGCTCG TRATCICCA AAAAAGTITG TIGTIGGATG TGATITAGAT TCITCTAAGT CTAGTICTAG GAGAGAGAAG AAGACAGCIT	3800	
CTCAAGCTTT AGGTTTAGAT TATTTTTTT CTTATTTAAG GCAATTTCTT AAGACTAAGA GGATAGTTTT AAGTATGGTTTT AGATATGGAT TTCCGCGTTA	3900	
TITTAAGGAT TTATTGAGGA AGTTGGTTTC AGAGGATTCG GAGTTTGATA CTGAGTATTA TAATGCTTTA AGGAAAAGGT TACTTAGTGT ATGTAGTTAT	4000	
TCGATGGTAA ATAAATATITT TACCTATITTA GAATGCITAG TIGAAGTITT GECAGTITITG AATTITCATG ATTITATACCA GCGTGCGCIT AGGTATATGG	4100	
ATCAATCTAT TCTTAAGCCG CATGCTAGTG ATCATGATGG AGGATATAAT ACTACTTAGG AGATCTGATG CATATGTTTT ATTATTCAAT TTATGATCGA	4200	
AAGGCTCCGGT CTTATGGAGA TTTGATCTCT TTTCCTTCAG GTGAGAAAGA GGCTGCTATT CGATGGTTTA GAGATGTTGT GATGGATTCA GATTCTAAGA	4300	
ATATTTTTGCA TCGATATCCT GAGGATTTTG ATTTTGCTA TATTGGTAT TTTGATAAGG ATAAAGGACG TTTTTATCCT GTGGATGCTG GGATAGTTAC	4400	
CANTENDED T. COLORADOT. THINNITTERS. THOTOLOTAT. ARABIDARE. ACCOUNTING A COLORADARE ACCOUNT. TELEVISION		
To find Primers & Probes; click the "Find Primers/Probes" button		

Figure 5. Sequence tab

Note: If you select the Double-Stranded checkbox in the Sequence tab, both sense and reverse strands will be displayed. However, primers are designed using the sense strand sequence only.

Finding Primers To find primers:

Select **Tools > Find Primers/Probes** (). Primer Express software performs its calculations based on default parameter values.

The status bar, located at the bottom of the window, displays information about the progress of the calculations as the software searches for primer/probe sets. If primers are found, go to "Viewing Results" on page 21.

If primers were not found:

If the software does not find primers using default parameters, a pop-up will appear stating that no acceptable primer pairs were found and that you can see the Interim Results window. For more information on Interim Results, see *Primer Express Software Version 3.0 Online Help*.

At this point, you can:

- Manually design primers as described in "Manually Designing Primers for SYBR[®] Green Dye Assays" on page 23.
- Design using the complementary sequence. For more information, see *Primer Express Software Version 3.0 Online Help.*
- **Viewing Results** Primer Express software automatically displays the Primers/Probes tab, if it finds primers and probes. The Primers/Probes tab displays the Candidate Primers & Probes table that contains information about the candidate primers, probes, and amplicons (see "Figure 6. Primers/Probes tab displaying candidate primers and probes"). The forward primer sequences are displayed using the left-to-right 5'-to-3' convention, and reverse primer sequence using the right-to-left 5'-to-3' convention.

rimer	Express 3.	0															
Edît 1	View Tools	Window Hel	p														
0	A A						0 V R	8									
agMan	n® MGB Qu	antification	#1														
Jence	Parameters	Primers / Probe	©rder														
Candic	late Primers &	Probes															
± (Fuel Start	Fudlen	Ewd Im	Eved 2/GC	Bey Stat	Beylen	Bev Im	Bey %GC	Probe Start	Probe Le	Probe Tm	Probe %GC	Amp Tm	lámo %GC	l ám Ta	l ámo Ler	
1	1430	30	58	30	1499	21	59	48	1463	15	69	33	74	34	54	70	
2	1430	30	58	30	1499	21	59	48	1464	14	69	36	74	34	54	70	
3	1429	31	59	32	1499	21	59	48	1463	15	69	33	74	35	54	71	
•	1429	31	59	32	1499	21	59	48	1464	14	69	36	74	35	54	71	
i i	1428	32	59	31	1499	21	59	48	1463	15	69	33	74	35	54	72	
6	1428	32	59	31	1499	21	59	48	1464	14	69	36	74	35	54	72	
	1427	33	59	30	1499	21	59	48	1463	15	69	33	74	34	54	73	
	1427	33	59	30	1499	21	59	48	1464	14	69	36	74	34	54	73	
	1426	29	59	31	1499	21	59	48	1463	15	69	33	73	34	54	74	
0	1426	29	59	31	1499	21	59	48	1464	14	69	36	73	34	54	74	
1	1425	30	59	30	1499	21	59	48	1463	15	69	33	73	33	54	75	
2	1425	30	59	30	1499	21	59	48	1464	14	69	36	73	33	54	75	
3 4	4049	23	58	30	4128	25	58	40	4073	18	70	50	75	39	55	80	
4 4	4049	23	58	30	4128	25	58	40	4073	19	70	47	75	39	55	80	
5	4049	23	58	30	4128	25	58	40	4074	17	69	53	75	39	55	80	
6 4	4049	23	58	30	4128	25	58	40	4074	18	69	50	75	39	55	80	
7	4049	23	58	30	4128	25	58	40	4075	16	70	56	75	39	55	80	
8 4	4049	23	58	30	4128	25	58	40	4075	17	70	53	75	39	55	80	
9 4	4049	23	58	30	4128	25	58	40	4076	15	69	60	75	39	55	80	
0	4049	23	58	30	4128	25	58	40	4076	16	69	56	75	39	55	80	
1	4049	23	58	30	4128	25	58	40	4077	14	69	64	75	39	55	80	
2 4	4049	23	58	30	4128	25	58	40	4077	15	69	60	75	39	55	80	
3	4049	23	58	30	4128	25	58	40	4078	13	68	69	75	39	55	80	
4 4	4049	23	58	30	4128	25	58	40	4078	14	68	64	75	39	55	80	
5	4049	23	58	30	4128	25	58	40	4079	14	69	64	75	39	55	80	
6	4049	23	58	30	4128	25	58	40	4080	14	70	64	75	39	55	80	
7	4049	23	58	30	4128	25	58	40	4080	16	70	56	75	39	55	80	
8	4049	23	58	30	4129	26	59	38	4073	18	70	50	75	38	55	81	
9	4049	23	58	30	4129	26	59	38	4073	19	70	47	75	38	55	81	
0	4049	23	58	30	4129	26	59	38	4074	17	69	53	75	38	55	81	
6								11)	
.ocati	on																
-					1112893												
Secondary Structure																	
Oligo									Hairpin Self Dimers Cross Dimers								
Gigo Lengin								i	Most Stable Structure Found								
O Promos Deimos																	
Reverse Primer 21 Probe 15									AACT 5'								
Forv	vard Primer								LAGTGGAA	FTGATTAATAC	3'						
TCA	ATGTAACGT	AGTGGAATTG	ATTAATAC														
Rev	erse Primer																
	CTTACGTG4	ACCCAATGCA															
TC4	the second se						_										
TC4																	
TC4 Prot																	

Figure 6. Primers/Probes tab displaying candidate primers and probes

Evaluating the candidate primer and probe sets:

The Location section of the Primers/Probes tab illustrates the location of the primers and probes within the sequence. The number above the line is the starting base; the number below the line is the ending base. Note that you can also see the corresponding location of a selected candidate Primer/Probe set in the Sequence tab.

In the Sequence tab, the probe will be highlighted in pink, the forward primer in blue, and the reverse primer in yellow. These default color designations can be changed by clicking **Tools > Options**. If you place your cursor over any of these annotations, a tool tip will appear showing the name of the annotation (Probe, Forward Primer, Reverse Primers) start and end locations, Tm and %GC.

As a general guideline, select the primer/probe sets with a low Penalty score and a low amplicon length (if the Penalty score and Amplicon Length fields are not displayed, scroll to the right in the table). However, all primer/probe sets generated using default parameters meet primer and probe guidelines. For more information regarding Penalty scores, see *Primer Express Software Version 3.0 Online Help*.

Note: After the software finds primers and probes, the sequence box is locked. To edit the sequence, click **1** to unlock.

Saving the Document	Select File > Save As to save the document for future use.
Ordering Primers	To order your selected primers, refer to Chapter 4, "Ordering Primers and Probes."
	IMPORTANT! Before running your samples, Applied Biosystems recommends that you run control samples to verify the performance of the selected primers and probes.

Manually Designing Primers for SYBR® Green Dye Assays

You may choose to manually design primers and probes for a various reasons:

- Automated primer/probe design did not find primers.
- To design primers according to your own specifications.

Creating a Quantification Document

Create a Quantification document and load a sequence file as you would for automatic primer/probe set design. See "Creating a Quantification Document" on page 9.

Manually Designing the Primers

To design the Forward Primer:

- **1.** In the Sequence tab, select a putative forward primer sequence region containing at least 25 bases.
- **2.** Copy (**Ctrl+C**) the sequence.

IMPORTANT! The Primer Probe Test Tool eliminates non-ATCG bases. Before copying a sequence, change any non-ATCG bases, or select a different region of the sequence.

3. Select **Tools > Primer Probe Test Tool**. The Primer Probe Test Tool dialog box appears (see "Figure 7. Primer Probe Test Tool dialog box" on page 24).

2

Pie De Vent tots Weden Hob Pie De Vent tots Weden Hob Pie De Vent tots Weden Hob Statures (Fridsmit/Folice 1) Statures (Fridsmit/Folice 1) Statures (Fridsmit/Folice 1) Condide Fridsmit Folice Frid Stature (Fridsmit/Folice 1) Frid Stature (Fridsmit/Folice 1) </th <th>🔤 Pr</th> <th>imer</th> <th>Express 3</th> <th>.0</th> <th></th> <th>- 8)</th>	🔤 Pr	imer	Express 3	.0														- 8)
Comparison Comparison <td>File</td> <td>Edit \</td> <td>View Tools</td> <td>Window He</td> <td>ip I III I III III</td> <td>The last l</td> <td></td>	File	Edit \	View Tools	Window He	ip I III I III III	The last l												
Proceeding Process Data Process Data <td>ЭТ-</td> <td></td> <td></td> <td></td> <td># 1</td> <td>23 23</td> <td></td> <td></td> <td></td> <td>19 1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	ЭТ-				# 1	23 23				19 1								
1 Value 10, Team of Tea	Sec	ience	Parameters	Primers / Prob	es Order													
Image: constraint of the second sec		Candid	late Primere :	Prohes	onda													
Ito Ito <thito< th=""> <thito< th=""> <thito< th=""></thito<></thito<></thito<>		=	Fuel Start	Fwdlen	Ewd Tm	Ewd %60	Bey Start	Bevle	n Bey Im	Bey %G0	Probe Start	Probelle	Probe Tm	Probe %GC	Ámo Tro	Ame %GC	Amo Ta	Ámo Len
2 1430 3 58 30 1489 21 59 44 144 14 58 74 34 64 70 4 1429 21 59 44 1444 14 58 35 74 35 54 71 5 1428 21 59 44 1444 14 18 35 74 35 54 77 5 1428 21 59 147 15 142 25 164 14 15 18 35 74 35 54 77 54 77 54 77 54 77 55 54 77 55 54 77 55 54 77 55 54 77 55 54 77 55 54 77 55 54 77 55 54 77 55 54 77 55 54 77 55 54 77 55 56 56 56 56 56 56 56 56 56 5		1	430	30	58	30	1499	21	59	48	1463	15	69	33	74	34	54	70 🔨
8 1429 2 199 148 143 15 189 130 14 55 144 71 8 1426 2 199 148 144 14 15 189 130 14 55 144 72 9 146 12 199 146 144 15 15 30 74 34 144 72 9 146 126 2 199 146 144 15 15 30 74 34 144 72 16 126 2 9 3 156 166 35 74 34 144 74 16 126 2 9 3 156 166 164 16 35 74 34 14 74 74 16 126 2 9 3 156 166 166 166 166 166 166 166 166 166 166 166 166 166 166 166 166 166		2 1	430	30	58	30	1499	21	59	48	1464	14	69	36	74	34	54	70
1 168 22 55 3 149 2 164 14 15 55 33 14 16 164 17 16 164 17 16 16 164 17 16 16 164 17 16		3 1	429	31	59	32	1499	21	59	48	1463	15	69	33	74	35	54	71
142 22 55 5 149 21 59 48 144 14 59 54 44 54 72 8 1427 33 69 00 1492 21 59 48 144 53 54 44 64 72 8 1427 33 69 00 1492 21 59 48 144 53 54 44 64 72 8 145 23 65 30 149 21 65 30 54 75 11 145 30 65 30 7		5 1	428	32	59	32	1499	21	59	48	1463	15	69	33	74	35	54	72
1 1427 33 55 30 1489 21 59 48 1463 15 69 33 74 34 54 73 8 1425 23 55 30 11 148 22 55 31 11 148 54 74 34 54 74 10 1425 30 59 30 Primer Probe Test Tool 34 54 74 11 1425 30 59 30 Primer Probe Test Tool 34 54 75 12 1425 30 59 30 Primer Probe Test Tool 33 54 75 13 4449 22 58 30 Primer And Probes 33 55 80 13 443 22 58 30 Primer And Probes 33 55 80		6 1	428	32	59	31	1499	21	59	48	1464	14	69	36	74	35	54	72
8 1427 33 55 30 1428 14 65 55 14 54 17 16 1425 23 55 31 Primer Pack 14 14 65 15 14 54 17 11 1425 23 55 31 Primer Pack Packets 31 54 17 11 1425 30 55 30 55 30 55 30 55 30 55 30 55 30 55 30 55 30 55 30 55 30 55 30 30 55 30 30 55 30 30 55 30 30 55 30 30 55 30 30 55 30 30 55 30 30 55 30 30 55 30 30 55 30 30 55 30 30 55 30 30 30 55 30 30 55 30 30 55 30 30		7 1	427	33	59	30	1499	21	59	48	1463	15	69	33	74	34	54	73
9 123 23 25 30 30 74 11 123 23 25 30 30 74 12 125 30 55 30 74 75 30 75 80		8 1	427	33	59	30	1499	21	59	48	1464	14	69	36	74	34	54	73
1 1		9 I 10 1	426	29	59	31	🕮 Primer Pro	be Test	Tool						X	34	54	74 =
1 145 30 55 30 13 444 23 58 30 15 444 23 58 30 16 444 23 58 30 17 444 23 58 30 17 445 23 58 30 17 445 23 58 30 17 445 23 58 30 18 443 23 58 30 18 443 23 58 30 18 443 23 58 30 18 443 23 58 30 18 443 23 58 30 18 443 23 58 30 19 92 58 30 10 0 0 39 55 60 39 55 60 39 55 60 39 55 60 39 55 60 39 55 60 39 55		11 1	425	30	59	30	-Parameters									33	54	75
13 449 23 56 30 14 449 23 56 30 15 449 23 56 30 15 449 23 56 30 15 449 23 56 30 16 449 23 56 30 17 449 23 56 30 18 449 23 56 30 18 449 23 56 30 21 56 30 56 80 21 56 30 56 80 21 56 30 56 80 21 56 30 56 80 21 56 30 56 80 30 56 80 22 56 30 76 30 30 56 80 30 55 80 30 55 80 30 55 80 30 55 80 30 55 80 30		12 1	425	30	59	30	Dooument Type	TaqMa	n® MGB Quantifica	tion 💌	Parameter: Def	suit	×	Browse		33	54	75
1 1		13 4	1049	23	58	30	Deimore and De	haa							_	39	55	80
1 649 20 55 00 17 649 20 55 00 18 649 20 55 00 18 649 20 55 00 18 649 20 55 00 19 649 20 55 00 20 649 20 55 00 21 65 00 0 0 0 21 55 00 0 0 0 0 22 449 20 55 00 0		14 4	1049	23	58	30	- Filling a and Fil	Juos								39	55	80
Image: Product of the set of the se		16 4	1049	23	58	30							Tm %GC	Length		39	55	80
18 4049 23 56 30 19 4049 23 56 30 21 4049 23 56 30 21 4049 23 56 30 21 4049 23 56 30 21 4049 23 56 30 21 4049 23 56 30 22 4049 23 56 30 23 4049 23 56 30 24 4049 23 56 30 24 4049 23 56 30 24 4049 23 56 30 24 4049 23 56 30 24 4049 23 56 30 24 4049 23 56 30 24 4049 23 56 30 24 4049 23 56 30 25 30 30 56 51 26 2		17 4	1049	23	58	30	Fwd	Primer					0.0 0	0		39	55	80
1 449 23 66 0 <td></td> <td>18 4</td> <td>1049</td> <td>23</td> <td>58</td> <td>30</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Tm %GC</td> <td>Length</td> <td></td> <td>39</td> <td>55</td> <td>80</td>		18 4	1049	23	58	30							Tm %GC	Length		39	55	80
¹ / ₁ ¹ / ₂ <t< td=""><td></td><td>19 4</td><td>1049</td><td>23</td><td>58</td><td>30</td><td>Rev</td><td>Primer</td><td></td><td></td><td></td><td></td><td>0.0 0</td><td>0</td><td></td><td>39</td><td>55</td><td>80</td></t<>		19 4	1049	23	58	30	Rev	Primer					0.0 0	0		39	55	80
2 449 22 58 00 2 449 22 58 00 2 449 22 58 00 2 449 22 58 00 2 449 22 58 00 2 449 22 58 00 2 449 22 58 00 2 449 22 58 00 3 405 23 58 00 3 404 23 58 00 3 404 23 58 00 3 404 23 58 00 3 404 23 58 00 3 404 23 58 00 0 0 0 0 0 38 65 81 3 95 58 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <td></td> <td>20 4</td> <td>1049</td> <td>23</td> <td>58</td> <td>30</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td>Tm %GC</td> <td>Length</td> <td></td> <td>39</td> <td>55</td> <td>80</td>		20 4	1049	23	58	30						_	Tm %GC	Length		39	55	80
2 4443 23 58 30 2 4443 23 58 30 2 4443 23 58 30 2 4443 23 58 30 2 443 23 58 30 2 443 23 58 30 3 455 30 30 55 80 3 455 30 30 55 80 3 455 23 58 30 30 55 80 3 458 23 58 30 30 55 80 33 55 80 0 0 0 0 0 0 0 0 38 55 80 0 0 0 0 0 0 0 38 55 80 38 55 80 38 55 80 38 55 80 38 55 80 38 55 80 38 55 80 38 <td< td=""><td></td><td>22 4</td><td>1049</td><td>23</td><td>58</td><td>30</td><td>Prot</td><td>iel 1</td><td>CAATGTAACGTA</td><td>GTGGAATTGA</td><td>TTAATAC</td><td></td><td>75.0 30</td><td>30</td><td></td><td>39</td><td>55</td><td>80</td></td<>		22 4	1049	23	58	30	Prot	iel 1	CAATGTAACGTA	GTGGAATTGA	TTAATAC		75.0 30	30		39	55	80
2 4439 (2) 56 30 2 443 (2) 56 30 2 443 (2) 56 30 2 443 (2) 56 30 2 443 (2) 56 30 2 443 (2) 56 30 3 443 (2) 56 30 3 443 (2) 56 30 3 443 (2) 56 30 5 444 (2) 58 30 5 444 (2) 58 30 6 (2) 56 30 6 (2) 56 30 7 (2) 58 30 9 Potos 2 0 0 9 Potos 1 30 9 15 11		23 4	1049	23	58	30							Tm %GC	Length		39	55	80
Secondary Structure 33 35 30 Secondary Structure 33 35 31 Secondary Structure 0 33 55 31 Construction 0 <		24 4	1049	23	58	30	Prot	ie2					0.0 0	0		39	55	80
21 449 22 58 30 28 449 22 58 30 28 449 22 58 30 30 455 61 30 455 61 30 455 61 30 55 61 33 55 61 33 55 61 33 55 61 33 55 61 0 Powes Primer 0 0 Provact Primer 0 0 Prov		20 4	1043	23	58	30	Trin									39	55	80
8 4049 23 58 30 8 4049 23 58 30 8 4049 23 58 30 0 23 58 30 0 4049 23 58 30 0 0 Location 0 0 Probe 0 0 Probe 0 0 Probe 0 0 Probe 0 0 Shows Secondary Structure 0 0 Probe 0 0 Probe 0 0 Shows Secondary Structure 0 0 Probe 0 0 Probe 0 0 Show Secondary Structure 0 0 Probe 15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <		27 4	1049	23	58	30										39	55	80
2 4049 (23 58 30 0 10 (10) Length Hardin Set Dimes Cost Dimes 0 Location 0 Forward Primer 0 0 Perces Primer 0 0 Probe 1 30 0 Probe 2 0 0 Probe 1 30 0 Probe 1 15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		28 4	1049	23	58	30	-Secondary Stru	cture							_	38	55	81
Control Control <t< td=""><td></td><td>29 4</td><td>1049</td><td>23</td><td>58</td><td>30</td><td>06</td><td></td><td>[]] au</td><td>ath</td><td>Hairpin Self D</td><td>mers Cross D</td><td></td><td></td><td></td><td>38</td><td>55</td><td>81</td></t<>		29 4	1049	23	58	30	06		[]] au	ath	Hairpin Self D	mers Cross D				38	55	81
Construint Constru		30 I-	1043	2.5	100	130	015		Ler	gui	1				1	30	100	>
Other O Seconday Structure O O Probe 30 O Probe 0	R	Locatio	w.				Forward Pi	imer										
O Probe 1 30 O Recordary Structure 0 O Brobe 2 0 O Probe 2 0 O Recordary Structure 0 O Recordary Structure 0 O Probe 2 0 Forward Primer 23 O Probe 3 15 If Forward Primer 15 If Constrained Structure 15 If Constrained Primer 15 If Constrained Structure 15		200000					O Reverse Pr	imer										
C Sconday Studae 0 Olgo Show Seconday Studae 0 O Forward Primer 21							O Probe 1		3)								
Oligo Show Seconday Shutue O Forward Primer 21 Probe 15 Immed Primer 15 Immed Primer </td <td></td> <td>Secon</td> <td>dary Structur</td> <td>e</td> <td></td> <td></td> <td>O Probe 2</td> <td></td> <td>(</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		Secon	dary Structur	e			O Probe 2		(
O Foresca Primer 21 O Reverse Primer 21 O Peabe 15 Fill 11 Increase Primer 21 CARCED STREET 5' Timered Primer 15 Reverse Filmer 15 Tocchartication (Science) 15 Probe 15 Tocchartication (Science) 16 Probe 15				Oligo				Show Sec	ondary Structure									
Average Primer 21 Probe 15 Forward Primer 15 Forward Primer 15 TOACTINGT Storman 14 Reverse Primer 15 TOACTINGT GAGGET GAT TOAT TOAT TOAT TOAT TOAT TOAT TOAT		⊙ F¢	orward Prin	er			12											
Probe 15 Forward Primer		O Re	everse Prim	er					21		GCAATGT	AACT 5'						<u> </u>
Ferrers Primer *ACTOGATTGATGACCASI (GAAT (GAT (AATAC)) TCCCTACG/TGACCCASI (GAAT (GAT (AATAC)) ************************************		O Pr	obe						15		tii I		1945 - 295 - 2					=
IEGAAGIAGUAGUAGUAGUAGUAGUA Reverse Primer TCACITACGIGACCCAAIGCA Prote TCLGSAGCGBAAAATT		Forw	vard Primer								AGTEGAA	IT GATTAATA	AC 3'					
Reverse Filmer TOLACTIAGGIGACCCANTGCA Probe TOLGAAGCGAAAATT		TCA	ATGTAACG	TAGTGGAATTI	GATTAATAC													
TCACTAGGIGACCCAATGCA Picke TCTGA46GGA4AA1T		Rev	erse Primer															
Pide VICTGA46CGA4A1T		TCA	CTTACGTO	ACCCAATGCA														
		Prob	e .															
		TCT	GAAGCGAA	AATT							<							×
	L	-									1000 C				-			

Figure 7. Primer Probe Test Tool dialog box

- **4.** From the **Document Type** drop down menu, select the desired document type. Verify that the Parameter field is set to **Default**. For more information about changing parameters, see *Primer Express Software Version 3.0 Online Help*.
- **5.** Paste (**Ctrl+V**) the annotated sequence in the Fwd Primer field. The software displays the Tm, %GC, and the oligonucleotide length to the right of the Fwd Primer field.
- **6.** If the Tm is not between 58 °C to 60 °C, highlight a section of the sequence to view the corresponding Tm, %GC, and oligonucleotide length as if those highlighted bases were deleted. Once the highlighted region results in the desired Tm, click on **Trim** to delete the highlighted bases.

Ensure the following guidelines are met (for more information on design guidelines, refer to *Primer Express Software Online Help*):

- Amplicon Length 50 to 150 bases for optimum PCR efficiency.
- **Optimal Primer Length** 20 bases. Do not overlap primer and probe sequences.
- Tm 58 °C to 60 °C (**Optimal** Tm 59 °C).
- % GC 30% to 80%.

• 3' end – Make sure the last five nucleotides at the 3' end contain no more than two G + C residues.

Avoid the following motifs:

• **Repeating oligonucleotides** – Avoid runs of identical nucleotides. If repeats are present, there must be fewer than four consecutive G residues.

For secondary structure design considerations, see *Primer Express Software Version* 3.0 Online Help.

Note: If you cannot achieve the recommended Tm, you can design using the complementary sequence. For more information, see *Primer Express Software Version 3.0 Online Help*.

To design the Reverse Primer:

1. In the sequence tab, select a putative reverse primer sequence region (containing at least 25 bases).

IMPORTANT! The Primer Probe Test Tool eliminates non-ATCG bases. Before copying a sequence, change any non-ATCG bases, or select a different region of the sequence.

- **2.** Select Edit > Copy Complement.
- **3.** On the Primer Probe Test Tool dialog box, paste (**Ctrl+V**) the primer sequence into the Rev Primer field. The Primer Probe Test Tool displays the Tm, %GC, and the oligonucleotide length to the right of the Rev Primer field.
- **4.** If the Tm is not between 58 °C to 60 °C, highlight a section of the sequence to view the corresponding Tm, %GC, and oligonucleotide length. Once the highlighted region results in the desired Tm, click on **Trim** to delete the non-highlighted bases. Be sure to keep the above guidelines in mind.

Note that you can further customize your primer by editing the default parameter values found under the Parameters tab. For more information on editing parameters, see *Primer Express 3.0 Software Online Help.*

- Saving PrimerCopy and paste the primer and probe sequences into a text document, then save for
future reference.
- **Ordering Primers** To order your selected primer/probe set, refer to Chapter 4, "Ordering Primers and Probes."

IMPORTANT! Before running your samples, Applied Biosystems recommends that you run control samples to verify the performance of the selected primers and probes.

3

Overview

About This Chapter This chapter provides information on using Primer Express[®] software to automatically design primers and probes for allelic discrimination assays using default parameters. It also includes information on how to manually design primers and probes to obtain customized results.

Workflow

Automatically Designing Primers and Probes

Creating an Allelic Discrimination	To create a new allelic discrimination document: 1 Select File > New to open the New dialog box
Document	 Select File > New to open the New datog box. In the Type list, select TaqMan[®] MGB Allelic Discrimination or TaqMan[®] Allelic Discrimination. For best results, use TaqMan MGB probes. MGB probes are shorter than conventional probes and are more specific to the target sequence. Give LOW
	3. Click OK.
Loading a DNA Sequence File	A sample sequence file, <i>AY228765.txt</i> , is located in the sample sequences folder within the Primer Express folder. You can use this sample file to experiment with the software and design your primers and probes. Note that one forward primer, one reverse primer, and two probes are designed. The two probes, one for each of the SNP sites, will not be identical. However, the two probes must be designed using the same strand (sense strand).
	To load a sequence file:
	 Select Tools > Add DNA File (Note you can also copy and paste or type your sequence file in the Sequence tab.
	2. At the Add DNA File dialog box, navigate to and select the desired file. For information on the various file formats supported, see <i>Primer Express Software Version 3.0 Online Help</i> .

3. Click **Add**. Primer Express software loads the nucleotide sequence from the file and displays the sense strand in the Sequence tab (see "Figure 9. Sequence tab" on page 30). The sequence serves as the starting point for primer and probe design.

Notes

3

🛅 Primer Express 3.0	
File Edit View Tools Window Help	
📱 TaqMan® MGB Allelic Discrimination # 1	ð×
Sequence Parameters Primers / Probes Order	
File Name AY228765.txt	
Length 1548 bp. Selection 1 to 1 🗌 Double Stranded	
	لسب
ATGGGAAATC CCCTCCAAAT CTCCATTTTC CTGGTGTTCT GCATCTTTAT CCAATCAAGT GCTTGTGGAC AAGGCGTGGG AACAGAGCCC 1 100	~
GCCTTGGAGC TACTGAAGCT AGCAAGCCAT TAAAGAAGCC AGAGACCAGA TTCCTGCTCT TCCAAGATGA AAACGATCGC CTGGGCTGTC 6 200	
TCAGCACCCG GAAACACTGC AGGAGTGTGG CTTCAACAGC TCTCAGCCGC TTATCATGAT CATCCACGGG TGGTCGGTGG ATGGCTTGCT # 300	
ATCTGGAAGA TAGTGAGTGC GCTGAAGTCC CGACAGTCCC AACCTGTGAA TGTGGGGTTA GTGGACTGGA TCTCCCTGGC ATACCAGCAC 1 400	
CTGTTCAAAA CACCCGTATT GTGGGCCAGG ACGTGGCTGC TCTTCTCCTA TGGCTGGAGG AATCTGCGAA GTTTTCTCGG AGCAAAGTTC 🔌 500	
GTACAGCCTG GGAGCGCACG TCTCAGGGTT CGCAGGCAGC TCCATGGACG GGAAGAACAA GATTGGAAGA ATCACAGGGC TGGACCCTGC 🤅 600	
TTTGAGGGAA CGTCCCCCAA CGAGCGCCTT TCTCCTGATG ATGCCAATTT TGTGGACGCC ATTCATACCT TTACCAGGGA GCACATGGGC 1 700	
GCATCAAGCA GCCCATTGCC CACTATGACT TCTACCCCAA CGGGGGCTCC TTCCAGCCTG GCTGCCACTT CCTGGAACTC TACAAACACA 1 800	
TGGCCTAAAC GCCATAACCC AGACCATCAA ATGTGCCCAT GAGCGCTCCG TGCACCTCTT CATTGACTCC TTGCAACACA GTGACCTGCA C 900	
TTCCAGTGCA GCGACATGGG CAGCTTCAGC CAAGGTCTAT GCCTGAGCTG CAAGAAGGGC CGTTGCAACA CTCTGGGTTA TGACATCCGC 🌶 1000)
CAGGCAAGAG CAAGAGGCTC TTCCTCATCA CGCGAGCCCA GTCTCCCTTC AAAGTTTATC ATTACCAGTT CAAGATCCAG TTCATCAATC & 1100)
GCCGGTAGAG CCTACTTTTA CCATGTCGCT GCTGGGAACA AAAGAAGAAA TAAAGAGAAT TCCCATCACC CTGGGCGAAG GAATTACCAG C 1200)
TATTCCTTCC TTATCACACT GGACAAAGAC ATCGGCGAGT TGATCCTGCT CAAGTTCAAG TGGGAAAACA GTGCAGTGTG GGCCAATGTG 1 1300	J
TGCAGACCAT CATGCTATGG GGCATAGAAC CTCACCACTC TGGCCTCATT CTGAAGACCA TCTGGGTCAA AGCTGGAGAG ACGCAGCAAA 🤅 1400)
TTGCCCCCGAA AATCTGGATG ACCTCCAGCT TCACCCGAGC CAGGAGAAAG TCTTTGTGAA CTGTGAAGTG AAGTCAAAAA GACTGACTGA 🕴 1500)
CAGATGAGTC AAGAGACCCA TGCAAAAAAA TAAAGAAGTC TATTCTTT 1548	3
	~
To find Primers & Probes, click the "Find Primers/Probes" button	

Figure 9. Sequence tab

Note: If you select the Double-Stranded checkbox in the Sequence tab, both sense and anti-sense strands will be displayed. However, primers and probes are designed using the sense strand sequence only.

Assigning a SNP To assign a SNP target: Target

- **1.** Highlight the SNP target site.
- 2. Select Edit > Annotate > SNP Target ()) then select the variant for the SNP site. To determine the variant to select, find the two possible variant bases for your SNP, then click the code between the two bases. In the example sequence provided, the SNP target is located at position 528 as a G/A variant, so click R, then OK (see "Figure 10. Determining variant using SNP Target Tool" on page 31).

TaqMan® M Sequence Par	GB Allelic D	the standard in states									and the second second
Sequence Par		riscrimination	n # 1								PX
	ameters Prime	ers / Probes Ord	der								
File Name	AY228765 bit		2								
			J								
Length	1548 bp.	Selection	528 to	528	Double S	Stranded					
∇											
lı	linnin		hini							uluuu	
ATGGGAAATC	CCCTCCAAAT	CTCCATTTTC	CTGGTGTT	CT GCATCT	TTAT CCAAT	CAAGT	GCTTGTGGAC	AAGGCGTGGG	AACAGAGCCO	Γ ₁₀₀	^
GCCTTGGAGC	TACTGAAGCT	AGCAAGCCAT	TAAAGAAG	CC AGAGAC	CAGA TTCCT	GCTCT	TCCAAGATGA	AAACGATCGC	CTGGGCTGTC	C 200	
TCAGCACCCG	GAAACACTGC	AGGAGTGTGG	CTTCAACA	gc 🛅 SNP	/Target		CATCCACGGG	TGGTCGGTGG	ATGGCTTGCT	A 300	
ATCTGGAAGA	TAGTGAGTGC	GCTGAAGTCC	CGACAGTC	CC		_	GTGGACTGGA	TCTCCCTGGC	ATACCAGCAG	7 400	
CTGTTCAAAA	CACCCGTATT	GTGGGCCAGG	ACGTGGCT	GC			AATCTGCGAA	GTTTTCTCGG	AGCAAAGTTO	A 500	
GTACAGCCTG	GGAGCGCACG	TCTCAGGGTT	CGCAGGCA	GC			GATTGGAAGA	ATCACAGGGC	TGGACCCTGG	C 600	
TTTGAGGGAA	CGTCCCCCAA	CGAGCGCCTT	TCTCCTGA	rg M	/ /W\ \B		ATTCATACCT	TTACCAGGGA	GCACATGGGG	I 700	
GCATCAAGCA	GCCCATTGCC	CACTATGACT	TCTACCCC	AA //			GCTGCCACTT	CCTGGAACTC	TACAAACACA	1 800	
TGGCCTAAAC	GCCATAACCC	AGACCATCAA	ATGTGCCC	AT 📈	$\sqrt{1}$	<u> </u>	CATTGACTCC	TTGCAACACA	GTGACCTGCA	6 900	
TTCCAGTGCA	GCGACATGGG	CAGCTTCAGC	CAAGGTCT	AT (C)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Gi	CGTTGCAACA	CTCTGGGTTA	TGACATCOGO	A 1000	1
CAGGCAAGAG	CAAGAGGCTC	TTCCTCATCA	CGCGAGCC	CA 🗸	6		ATTACCAGTT	CAAGATCCAG	TTCATCAATO	A 1100	1
GCCGGTAGAG	CCTACTTTTA	CCATGTCGCT	GCTGGGAA	CA			TCCCATCACC	CTGGGCGAAG	GAATTACCAG	; C 1200	1
TATTCCTTCC	TTATCACACT	GGACAAAGAC	ATCGGCGA	GT OK	Canc		TGGGAAAACA	GTGCAGTGTG	GGCCAATGTO	7 1300	1
TGCAGACCAT	CATGCTATGG	GGCATAGAAC	CTCACCAC	rc			TCTGGGTCAA	AGCTGGAGAG	ACGCAGCAA	G 1400	
TTGCCCCGAA	AATCTGGATG	ACCTCCAGCT	TCACCCGA	GC CAGGAG	AAAG TCTTT	GTGAA	CTGTGAAGTG	AAGTCAAAAA	GACTGACTGA	A 1500	1
CAGATGAGTC	AAGAGACCCA	TGCAAAAAAA	TAAAGAAG	IC TATTCT	TT					1548	

Figure 10. Determining variant using SNP Target Tool

Finding Primers	To find primers and probes:
and Probes	Select Tools > Find Primers/Probes ()). Primer Express software performs its calculations based on default parameter values.
	The status bar, located at the bottom of the window, displays information about the progress of the calculations as the software searches for primer, probe, and amplicon sets. If primers and probes are found, go to "Viewing Results".
	If primers and probes were not found:
	If the software does not find primers and probes using default parameters, a pop-up will appear stating that no acceptable primer pairs were found and that you can see the Interim Results window. For more information on Interim Results, see <i>Primer Express Software Version 3.0 Online Help</i> .
Viewing Results	Primer Express software automatically displays the Primers/Probes tabs if it finds primers and probes (see "Figure 11. Primer/Probe Tab displaying candidate primers and probes" on page 32). The Primers/Probes tab displays the candidate Primers & Probes table that contains information about forward primers, reverse primers, probes, and amplicons. The forward primer sequences are displayed using the left-to-right 5'-to-3' convention, and reverse primer sequences are displayed using the right-to-left 5'-to-3' convention.

Notes

3

💷 P	rime	r Express 3.	0														- 7 ×
File	Edit	View Tools	Window Hel	þ													
	Ö	🖥 🕷 🛛 🛪			国 王 -	 ← 回 	J 🍐 🔤	0 🗹 A	3								
₿T	адМа	an® MGB All	elic Discrimi	nation # 1													- 7 🛛
Sec	uenc	e Parameters	Primers / Probe	s Order													
•	Can	didate Primers &	Probes														
	#	Fwd Start	Fwd Len	Fwd Tm	Fwd %GC	Rev Start	Rev Len	Rev Tm	Rev %GC	Probe1 S	Probe1 L	Probe1 Tm	Probe1 %	Probe2 S	Probe2 L	Probe2 Tm	Probe2 %.
	1	482	24	58	42	560	20	60	50	521	15	65	60	518	14	67	50 🔨
	2	482	24	58	42	560	20	60	50	521	16	66	63	518	14	67	50
	3	482	24	59	42	560	20	60	50	522	15	65	60	518	14	67	50
	5	482	25	59	44	560	20	60	50	521	16	66	63	518	14	67	50
	6	482	25	59	44	560	20	60	50	522	15	65	67	518	14	67	50
	7	481	25	59	40	560	20	60	50	521	15	65	60	518	14	67	50
	8	481	25	59	40	560	20	60	50	521	16	66	63	518	14	67	50
	9	481	20	59	40	560	20	60	50	522	15	60	6/	510	14	67	50
	11	481	26	60	42	560	20	60	50	521	16	66	63	518	14	67	50
	12	481	26	60	42	560	20	60	50	522	15	65	67	518	14	67	50
	13	477	23	59	43	560	20	60	50	521	15	65	60	518	14	67	50
	14	477	23	59	43	560	20	60	50	521	16	66	63	518	14	67	50
	15	477	23	59	43	565	20	59	45	522	15	65	6/	518	14	67	50
	17	482	24	58	42	565	22	59	45	521	16	66	63	518	14	67	50
	18	482	24	58	42	565	22	59	45	522	15	65	67	518	14	67	50
	19	482	25 59 44 565 22 59 45						45	521	15	65	60	518	14	67	50
	20	482	25 59 44 565 22 59 45							521	16	66	63	518	14	67	50
	21	482	25	59	44	565	22	59	40	522	15	65	6/	518	14	67	50
	23	481	25	59	40	565	22	59	45	521	16	66	63	518	14	67	50
	24	481	25	59	40	565	22	59	45	522	15	65	67	518	14	67	50
	25	475	23	58	43	560	20	60	50	521	15	65	60	518	14	67	50
	26 27	481	26	50	42	565	22	59 60	45	521	15	65	60	518	14	67	50
	28	481	26	60	42	565	20	59	45	521	16	66	63	518	14	67	50
	29	475	23	58	43	560	20	คา	50	522	15	65	67	519	14	67	50 🗡
	<																2
	Loca	ation															
						51	5 5 31 5 541										
	Seci	ondary Structure	,														
			01				1 1		H	aimin Call Dina							
		Comunet Drive	Uligo				Length			ser Dine	is Closs Dime	15					
	8	Beverse Prime					20			Host Stap.	le structur	e Found					
	6	Probe 1	·				15			AATCCACTT	GAAACG 5'						
	lõ	Probe 2					14			- i i							=
	1 m	10.1								LTTGGGTAC#	131						
	G	CAAAGTTCAC	TAATTGGGTA	CA													
	R	everse Primer															
	T	TGTTCTTCCCC	GTCCATGGA														
	Pr	robe 1	2040														
	Pr	inhe 2	асма														
	Â	CGTCTCAGGG	TTC														×
												11					

Figure 11. Primer/Probe Tab displaying candidate primers and probes

Evaluating the candidate primer and probe sets:

The Location section illustrates the location of the primers and probes within the line sequence. The number above the line is the starting base; the number below the line is the ending base. Note that you can also see the corresponding location of a selected candidate Primer/Probe set in the Sequence tab.

In the sequence tab, the probe 1 will be highlighted in pink, probe 2 will be highlighted in green (if probe 1 and 2 overlap, the overlap region will appear green), the forward primer in blue, and the reverse primer in yellow (see "Figure 12. Probe annotations in Sequence tab" on page 33). These default color designations can be changed by clicking **Tools > Options**. If you place your cursor over any of these annotations, a tool tip will appear showing the name of the annotation (Probe, Forward Primer, Reverse Primers) start and end locations, Tm and GC%.

Primer Express 3.0	
File Edit View Tools Window Help	
TaqMan® MGB Allelic Discrimination # 1	
Sequence Parameters Primers / Probes Order	
👔 File Name 🛛 AY228765.txt 🛛 🕵	
Length 1548 bp. Selection 528 to 528 🔲 Double Stranded	
ΥΥ	
ATGEGAAATC CCCTCCAAAT CTCCATTTTC CTGGTGTTCT GCATCTTTAT CCAATCAAGT GCTTGTGGAC AAGGGGTGGG AACAGAGCCC 1 100	~
GCCTTGEAGC TACTGAAGCT AGCAAGCCAT TAAAGAAGCC AGAGACCAGA TTCCTGCTCT TCCAAGATGA AAACGATCGC CTGGGCTGTC 5 200	
TCAGCACCCG GAAACACTGC AGGAGTGTGG CTTCAACAGC TCTCAGCCGC TTATCATGAT CATCCACGGG TGGTCGGTGG ATGGCTTGCT # 300	
ATCTGGAAGA TAGTGAGTGC GCTGAAGTCC CGACAGTCCC AACCTGTGAA TGTGGGGTTA GTGGACTGGA TCTCCCTGGC ATACCAGCAC 1 400	
CTGTTCAAAA CACCCGTATT GTGGGCCAGG / Probe 1 (521 - 535) Tm: 65° GC%: 60 Probe 2 (518 - 531) Tm: 67° GC%: 50 AGCAAAGTTC 2 500	
GTACAGCCTG GGAGCGCACG TCTCAGGETT CGCAGGCAGC TCCATGGACG GGAAGAACAA GATTGGAAGA ATCACAGGGC TGGACCCTGC C 600	
TITGAGGGAA CGTCCCCCAA CGAGCGCCTT TCTCCTGATG ATGCCAATTT TGTGGACGCC ATTCATACCT TTACCAGGGA GCACATGGGC 1 700	
GCATCAAGCA GCCCATTGCC CACTATGACT TCTACCCCAA CGGGGGCTCC TTCCAGCCTG GCTGCCACTT CCTGGAACTC TACAAACACA 1 800	=
TEGECTAAAC ECCATAACCE AGACCATCAA ATETECCCAT EAGEGETECE TECACCTETT CATTEACTEC TTECAACACA ETEACCTECA E 900	
TTCCAGTGCA GCGACATGGG CAGCTTCAGC CAAGGTCTAT GCCTGAGCTG CAAGAAGGGC CGTTGCAACA CTCTGGGTTA TGACATCCGC # 1000	
CAGGCAAGAG CAAGAGGETE TTEETEATEA EGEGAGEEEA GTETEEETE AAAGTTTATE ATTAECAGTT CAAGATEEAG TTEATEAATE # 1100	
GCCGGTAGAG CCTACTTTTA CCATGTCGCT GCTGGGAACA AAAGAAGAAA TAAAGAGAAT TCCCATCACC CTGGGCGAAG GAATTACCAG C 1200	
TATTCCTTCC TTATCACACT GGACAAAGAC ATCGGCGAGT TGATCCTGCT CAAGTTCAAG TGGGAAAACA GTGCAGTGTG GGCCAATGTG 7 1300	
TGCAGACCAT CATGCTATGG GGCATAGAAC CTCACCACTC TGGCCTCATT CTGAAGACCA TCTGGGTCAA AGCTGGAGAG ACGCAGCAAA C 1400	
TTGCCCCCGAA AATCTGGATG ACCTCCAGCT TCACCCGAGC CAGGAGAAAG TCTTTGTGAA CTGTGAAGTG AAGTCAAAAA GACTGACTGA # 1500	
CAGATGAGTC AAGAGACCCA TGCAAAAAAA TAAAGAAGTC TATTCTTT 1548	
	20
50 results found.	

Figure 12. Probe annotations in Sequence tab

Note: After the software finds primers and probes, the sequence box is locked. To edit the sequence, click **a** to unlock.

As a general guideline, select the primer/probe sets with a low Penalty score and a low amplicon length (if the Penalty score and Amplicon Length fields are not displayed, scroll to the right in the table). However, all primer/probe sets generated using default parameters meet primer and probe guidelines. For more information regarding Penalty scores, see *Primer Express Software Version 3.0 Online Help*.

Saving the
DocumentBefore proceeding to other designs, be sure to save the Primer/Probe annotations and
results found. Select File > Save As to save the document for future use.

Ordering Primers
and ProbesTo order your selected primers and probes, refer to Chapter 4, "Ordering Primers and
Probes."

IMPORTANT! Before running your samples, Applied Biosystems recommends that you run control samples to verify the performance of the selected primers and probes.

Manually Designing Primers and Probes

You may choose to manually design primers and probes for a various reasons:

- Automated primer/probe design did not find primers or probes.
- To design primers and probes according to your own specifications.

Creating an Allelic
Discrimination
DocumentCreate an MGB allelic discrimination document and load a sequence file as you would
for automatic primer/probe set design. See "Creating an Allelic Discrimination
Document" on page 29.

Manually Designing the Allele 1 Probe

To design the probe for Allele 1:

- **1.** In the Sequence tab, identify the SNP site and the putative probe sequence.
- 2. Assign the SNP target (see "Assigning a SNP Target" on page 30).
- **3.** Select the sequence for the probe (13 to 25 bases) then select **Edit > Copy with** Allele 1.

IMPORTANT! The Primer Probe Test Tool eliminates non-ATCG bases. Before copying a sequence, change any non-ATCG bases, or select a different region of the sequence.

- 4. Select Tools > Primer Probe Test Tool.
- **5.** From the Document Type drop down menu, select the desired document type. Verify that the Parameter field is set to **Default**. For more information about parameters, see *Primer Express Software Version 3.0 Online Help*.
- **6.** Paste (**Ctrl+V**) the annotated sequence in the Probe 1 field. The software displays the Tm, %GC, and the oligonucleotide length to the right of the Probe 1 field (see "Figure 13. Primer Probe Test Tool dialog box" on page 35). Note that the original Allele 1 variant base appears in lower case on the Primer Probe Test Tool.

TagMan® MGB Allelic Discrimination # 1 Sequence Parameters Presenters Protect Out # 1948 by Selection 809 to 87 Double Stranded Length 1948 by Selection 809 to 87 Double Stranded Controller ControlAnd Control Contr												Wadaw Hala	Primer Express 3.0
Torquenze Markets Multic Decrementations / 1 Sequence Parameters / Protein Order Sequence Parameters / Protein Order Parameters											and the state of the state	Window Help	THE Edit View Tools V
Control C										i @ ! ∰ ₩ A8	≝ → ← □ □		U 🖸 🖬 🚳 & L
Sequence Parameter Primer / Pr												lic Discrimination # 1	👹 TaqMan® MGB Alleli
Transformer Trans												Primers / Probes Order	Sequence Parameters Pr
Length 1548 bp. Section 03 to 03 " Double Standed												65.txt	🔞 File Name AY228765
Control and a control of the second of										Franded	927 🗖 Dauble Sh	Celection 000 to	Length 1549 bp
LINETTALIA CONTRACTO CARACTATTI CONCUTTO CALACTACATO CONTROLA ARGEGIGOS OF TOTOGONO A ARGEGICOS OF TOTOGONO ARGEGICOS OF TOT										Juanaba		000 00	Congin Towo bp.
ATGGRAAATE CCTCCLAAAT ECCACTTE CTGRUTTET CAATUTTAT CCAATCAATE GETTUTGAGAA AAGCAGGE TUTTEGGACTAA GETTUGAGA CAATCAGE ACGAGUET TALACAGAE CAAGCAGEA TUTCTACCEGE TATATAATE AAAGCAGEA TUTGGGATAAA ATGGRAAAACTEG GAAAACTEG CAAAGTEGE CAAAGTEGE CAAGTEGE AAGCAGEA TUTGGGATAA CATGGGATE TUTGAGAAGA TUTGAGAGA CATCCCCAAT GUGGACAGET CCCAAGATEGE TUTGAGAGA CATCCCCAAT GUGGACAGET CCCAAGATEGE Decument Type: TagMan® MGB Aleic Discrimings Planmeter: Decult Planme	uluuu		uutuuu		щĬ		uluu		بليتين بيناية		muuluuuulu	<u>ala an an</u>	լուսումուսուս
piciertolade Tachadet a declaracità traducade a declaracità interesti interestato e declaracità declar	100						AA	rgggag	AACAGAGCCC TT	CAAGT GCTTGTGGAC AAGGCGTGGG	GCATCTITAT CCAATCA	AAAT CTCCATTTTC CTGGTGTTCT	ATGGGAAATC CCCTCCAA
TRUCHARACTOR CARACTER CARACTER CONTRACTOR CO	200						CC	TCAGA	CTEGECTETC ET	GCTCT TECAAGATGA AAACGATEGE	AGAGACCAGA TTCCTGO	AGET AGEAAGEEAT TAAAGAAGEE	GCCTTGGAGC TACTGAAG
TUTUTALAAA CALCOTANT GOOGCAGE TACONGOTOC GEPTANE Probe Tool Calcolato A Concerta Secondary Structure Processes Processes Proceses Processes Proces	300						DO TO	ACCAT	ATACCACCAC TA	COTTA CTCCACTOCA TOTCCOTOC	ANCOTOTONA TOTOGO	THE RETRANSTOLOG CITCARCAGE	ATCTGGAAGA TAGTGAGT
GTALABOCCAS OTTOCASGENT COCASGEAGE Parameters Document Type: TadMar@ MGB Allaic Discriminat. ♥ Parameter: Default © CATTABOCA COCCATTOCC CATTATICT TOTOCCATA Document Type: TadMar@ MGB Allaic Discriminat. ♥ Parameter: Default ♥ Document Type: TadMar@ MGB Allaic Discriminat. ♥ Parameter: Default ♥ Document Type: TadMar@ MGB Allaic Discriminat. ♥ Parameter: Default ♥ Document Type: TadMar@ MGB Allaic Discriminat. ♥ Parameter: Default ♥ Document Type: TadMar@ MGB Allaic Discriminat. ♥ Parameter: Default ♥ Document Type: TadMar@ MGB Allaic Discriminat. ♥ Parameter: Default ♥ Document Type: TadMar@ MGB Allaic Discriminat. ♥ Parameter: Default ♥ Document Type: TadMar@ MGB Allaic Discriminat. ♥ Parameter: Default ♥ Document Type: TadMar@ MGB Allaic Discriminat. ♥ Parameter: Default ♥ Document Type: TadMar@ MGB Allaic Discriminat. ♥ Parameter: Default ♥ Document Type: TadMar@ MGB Allaic Discriminat. ♥ Parameter: Default ♥ Document Type: TadMar@ MGB Allaic Discriminat. ♥ Parameter: Default ♥ Document Type: TadMar@ MGB Allaic Discriminat. ♥ Parameter: Default ♥ Document Type: TadMar@ MGB Allaic Discriminat. ♥ Parameter: Default ♥ Document Type: TadMar@ MGB Allaic Discriminat. ♥ Parameter: Default ♥ Document Type: TadMar@ MGB Allaic Discriminat. ♥ Parameter: Default ♥ Document Type: TadMar@ MGB Allaic Discriminat. ♥ Parameter: Default ♥ Document Type: TadMar@ MGB Allaic Discriminat. ♥ Parameter: Default ♥ Document Type: TadMar@ MGB Allaic Discriminat. ♥ Parameter: Default ♥ Document Type: TadMar@ MGB Allaic Discriminat. ♥ Parameter: Default ♥ Document Type: TadMar@ MGB Allaic Discriminat. ♥ Parameter: Default ♥ Document Type: TadMar@ MGB Allaic Discriminat. ♥ Discriminat. ♥ Parameter: Default Type: TadMar@ MGB Allaic Discriminat. ♥	500									est Tool	🔤 Primer Probe Te	FATT GTGGGCCAGG ACGTGGCTGC	CTGTTCAAAA CACCCGTA
TTTGAGGAA COTCOCCAA CAGACCCTT TCTCTCTATT GOTTAAGC CCATANCCC AGACCATCAA ATGTGCCAT TTGCATCAA COTCATTCTCC TTATCACCAA GOTTAGCT AGACCATCAA ATGTGCCAT TTGCATCAA COTCATTCTC CTATTCACCCCAA CAGCCAAAC CAACACTCC COTGGAAACA TATTCTTCT TTTTCTCTATCA COTGGACCAA CCCGTGAAS CTATTTTC CTTTCTCTCTC COTGGACAA TATTCTTCT TTTTCCATCT COTGGACAACA CTCACCACT TTGCCCCGAA ATTTTCCATCT COTGGACAACA CTCACCACT TTGCCCCCAA ATTTTCCATCT COTGGACAACA CTCACCACT TTGCCCCCAA ATTTCCATC COCGACACACCA CAGCTACACC TOCAAAAAA TAAAGAACT COCCACT TGCCCCCAAACCCCACT TOCAAAAAA TAAAGAACT Pode 1 ACGCCATACCCCAGGACCATCCAAATGTGCCI TTG Soccadary Structure Olgo Lergth Olgo Lergth Phone 0	600										Parameters	CACG TCTCAGGGTT CGCAGGCAGC	GTACAGCCTG GGAGCGCA
OGATTAGEA COCATTOCE CALTATET TETAECCAA Promers and Probes Finders and Probes Finders Accessed Caltates Caltates Caltates Caltates Caltates Caltates Finders Caltates Caltates Caltates Caltates Caltates Caltates Caltates Finders Caltates Calta	700			Deemer					Deservation Default		Descent Trees Tes	CAA CGAGCGCCTT TCTCCTGATE	TTTGAGGGAA CGTCCCCC
TOCCTARAGE COLATARCE ABACETTAL ATEMPOREAL Printers and Probes TOCACTAL COCARCETOR ACCTORE CAMONTAT CASCARAGE COLATAGE COLAGONCA COCOTARAGE COLATON COLATION COLATION TITUTOTO TTATCACTO GONGARACE ATOOCCAR TOCCARCAT CANTON COLATAGE COLAGONCAR Find Pinner Probe 1 ACGCCATAGECCAATGE COLATAGECCAAGE Probe 1 ACGCCATAGECCAATGECCA Find Pinner Probe 1 ACGCCATAGECCAAGECCATCAATGECCA COLORIDA TITUTOTO TATACACTO COLATAGAAA TAAAGAATTO Probe 1 ACGCCATAGECCAAGECCATCAATGECCA Find Pinner Oligo Length Tatino Construction Color Difference Oligo Length Tatino Construction Color Difference Oligo Length Tatino Construction Color Difference Color Dif	800			Browse		~			Parameter: Derauit	aqManw MGB Allelic Discriminati 🚩 F	Document Type: Tag	IGCC CACTATGACT TCTACCCCAA	GCATCAAGCA GCCCATTG
TTCCADEGLA BIOGLACHOGA CACHTLAGE CALAGITAT CAGECADAGE CACHTLAGE CALAGITAT COCEGNAAGE CACHTLAGE CACHTCH COCUMENT DOCEGNAAGE CACHTCH CACHTCH COCUMENT TTCCTCHT TATACACHT GOCLAGAACA ATCOGCADA TATCCTCHT TATACACHT GOCLAGAACA ATCOGCADA TOCAAACACH CACHTCHT CACHTCHT TOCACACHT CACHTCHT CACHTCHT TOCACHTCHT CACHTCHT TOCACHTCHT CACHTCHT TOCACHTCHT CACHTCHT TOCACHTCHT CACHTCHT TOCACHTCHT T	900										Primers and Probes	CCC AGACCATCAA ATGTGCCCAT	TGGCCTAAAC GCCATAWC
LADUGADONE CARANDE CAR	1000											GGG CAGCITCAGC CAAGGICTAT	TTCCAGTGCA GCGACATG
TRUTCUTURE TRATALACT BACAAACA ATRODOCADT TRADICATOR TALACTA BACAAACA ATRODOCAT TROCARCARC ATRODOCATOR GACAAAACAAAC CTALACACA Probactar Sactorator Accordance Proba 1 ACGCCATACCCAGACCATCAAATGTGCC Proba 2 Tm StaC Length Tm StaC Length Go 0 0 Tm StaC Length Co 0 0 Tm StaC Length Co 0 0 Tm StaC Length	1100		th	Length	KGC	Tm 🏾 🎖	Tm				Fund Primar	TTA CONTRACTOR COCOMOLOGIA	GCCGGTAGAG CCTACTU
TRECARCIAL CATECACACTO TRECARCIAL CATECACACTO TRECARCIAL AATOCATOR OF CATECACACTO CAGATGAGTO AAGAGCCCA TOCAAAAAAA TAAAGAAGTO Probe 1 ACGCCATGACCAGACCATGAACTGGCC Probe 2 TIM TAGC Length TIM TAGC Length TIM TAGC Length TIM TAGC Length 0 0 0 0 TIM TAGC Length 0 0 0 0 TIM TAGC Length	1300			0)	0.0 0	0.0				r na r niner	CACT GGACAAAGAC ATCGGCGAGT	TATTCCTTCC TTATCACA
TTSECECCAA AATCTECART ACCTECART TAACECART CACATEGARTE AASAGACCCA TOCAAAAAAA TAAAGAART Probe 1 ACGECATAGCCCAGGACCATCAAATGTGCC Probe 2 Probe 2 P	1400		th	Length	SGC	Tm 🕺	Tm				Bey Primer	ATGG GGCATAGAAC CTCACCACTC	TGCAGACCAT CATGCTAT
CADATGADEC AAGAGACCCA TOCAAAAAAA TAAAGAAGTC Pube 1 ACGCCATACCCAGACCATCAGCCAGACCATCAGCC Pube 2 Tm %5C Length 00 0 0 -Secondary Structure Olgo Length 14000 Sel Dimons Cons Dimons	1500		-	0)	0.0 0	0.0					SATG ACCTCCAGCT TCACCCGAGC	TTGCCCCGAA AATCTGGA
Probe 2 Trim Secondary Structure Oligo Length Harpon Set Directs Cost Directs O	1548		th	Length	GC	Tm 🛛 🕷	Tm		ratacd	ACGCCATAaCCCAGACCATCAAAT	Probe 1	CCA TGCAAAAAA TAAAGAAGTC	CAGATGAGTC AAGAGACC
Pube 2 Tim Secondary Structure Olgo Length Harpin Sel Dimers Cross Dimers O			_	29	~	82.0 5	82.						
			m	Length	sul j	IM %	Im				Probe 2		
Secondary Structure			_	0	,		0.0				Trin		
Secondary Structure Oligo Length () Forward Primer 0													
Olgo Length Harbon Sell Dimers Cross Dimers													
Oligo Length Tratium Set Unites Closs Unites								20			-secondary structure-		
Forward Primer 0								's Cros	Halpri Self Dime	Length	Oligo		
										0	 Forward Primer 		
Reverse Primer 0										0	O Reverse Primer		
O Probe 1 29										29	O Probe 1		
Probe 2 0										0	O Probe 2		
Characterization Characterization											Channel		
Show Secondary structure										v Secondary Structure	Shows		
		1					_		·		0		

Figure 13. Primer Probe Test Tool dialog box

7. If the Tm is not between 65 °C to 67 °C, highlight a section of the sequence to view the corresponding Tm, %GC, and oligonucleotide length. Once the highlighted region results in the desired Tm, click on **Trim** to delete the non-highlighted bases.

Ensure the following guidelines are met (for more information on design guidelines, refer to *Primer Express Software Version 3.0 Online Help*):

- Amplicon Length 50 to 150 bases for optimum PCR efficiency.
- **Probe Length** 13 to 25 bases (13 to 30 bases if using conventional TaqMan probes).
- $Tm 65 \degree C$ to 67 $\degree C$.
- % GC 30% to 80%.
- 5' end Cannot be a G residue. A G residue adjacent to the reporter dye will quench the reporter fluorescence somewhat, even after cleavage.
- Tm difference between probes Not greater than 1 °C
- **SNP site** Locate in the middle third of sequence or toward 3' end but not in the last two bases of 3' end (see "Figure 14. SNP site in an MGB probe" on page 36).

Figure 14. SNP site in an MGB probe

Avoid the following motifs:

- **Repeating oligonucleotides** Avoid runs of identical nucleotides. If repeats are present, there must be fewer than four consecutive G residues.
- **G residues on the 3' end** Avoid 5'-...GGG-MGB-3' or 5'-...GGAG-MGB-3'
- **Consecutive A residues** Avoid six consecutive A residues anywhere in the probe.
- **CC dinucleotides** Avoid two or more CC dinucleotides in the middle of the probe, which can sometimes reduce signal.
- **FAM[™]-dye labeled probes** If ordering FAM[™]-dye labeled probes, avoid a G in the second position on the 5' end.

For secondary structure design considerations, see *Primer Express Software Version* 3.0 Online Help.

Note: If you cannot achieve the recommended Tm, or probe allele 1 is no longer within the guidelines, you can design using the complementary sequence. For more information, see *Primer Express Software Version 3.0 Online Help*.

Manually Designing the	To design the probe for Allele 2:
Allele 2 Probe	Note: Keep the Allele 1 and Allele 2 probe Tms within one degree of each other.
	 In the Sequence tab, select the sequence for the probe (13 to 25 bases and includes the SNP site) then select Edit > Copy with Allele 2.
	IMPORTANT! The Primer Probe Test Tool eliminates non-ATCG bases. Before conving

IMPORTANT! The Primer Probe Test Tool eliminates non-ATCG bases. Before copying a sequence, change any non-ATCG bases, or select a different region of the sequence.

2. Select Tools > Primer Probe Test Tool.

- **3.** Paste (**Ctrl+V**) the sequence into the Probe 2 field. The Primer Probe Test Tool displays the Tm, %GC, and sequence length to the right of the field. Note that the original Allele 2 variant base will appear in lower case on the Primer Probe Test Tool.
- **4.** If the Tm is not between 65 °C to 67 °C, highlight a section of the sequence to view the corresponding Tm, %GC, and oligonucleotide length of the highlighted region. Once the highlighted region results in the desired Tm, click on **Trim** to delete the non-highlighted bases. Keep in mind the general design guidelines previously listed on page 35.

Manually Designing the Primers

To design the Forward Primer:

- **1.** Select a sequence (at least 25 bases) to the left of the probe. The sequence should be as close to the probe as possible without overlapping it.
 - **2.** Copy (**Ctrl+C**) the sequence.

IMPORTANT! The Primer Probe Test Tool eliminates non-ATCG bases. Before copying a sequence, change any non-ATCG bases, or select a different region of the sequence.

- **3.** On the Primer Probe Test Tool dialog box, paste (**Ctrl+V**) the sequence into the Fwd Primer field. The Primer Probe Test Tool displays the Tm, %GC, and the oligonucleotide length to the right of the Fwd Primer field.
- **4.** If the Tm is not between 58 °C to 60 °C, highlight a section of the sequence to view the corresponding Tm, %GC, and oligonucleotide length as if those highlighted bases were deleted. Once the highlighted region results in the desired Tm, click on **Trim** to delete the non-highlighted bases.

Ensure the following guidelines are met (for more information on design guidelines, refer to *Primer Express Software Version 3.0 Online Help*):

- Amplicon Length 50 to 150 bases for optimum PCR efficiency.
- **Optimal Primer Length** 20 bases. Do not overlap primer and probe sequences.
- Tm 58 °C to 60 °C (**Optimal** Tm 59 °C).
- % GC 30% to 80%.
- **3' end** Make sure the last five nucleotides at the 3' end contain no more than two G + C residues.

Avoid the following motifs:

• **Repeating oligonucleotides** – Avoid runs of identical nucleotides. If repeats are present, there must be fewer than four consecutive G residues.

For secondary structure design considerations, see *Primer Express Software Version* 3.0 Online Help.

To design the Reverse Primer:

- **1.** In the sequence tab, select a sequence (at least 25 bases) to the right of the probe. The sequence should be as close to the probe without overlapping it.
- **2.** Select Edit > Copy Complement.

IMPORTANT! The Primer Probe Test Tool eliminates non-ATCG bases. Before copying a sequence, change any non-ATCG bases, or select a different region of the sequence.

- **3.** On the Primer Probe Test Tool dialog box, paste (**Ctrl+V**) the sequence into the Rev Primer field. The Primer Probe Test Tool displays the Tm, %GC, and the oligonucleotide length to the right of the Fwd Primer field.
- **4.** If the Tm is not between 58 °C to 60 °C, highlight a section of the sequence to view the corresponding Tm, %GC, and oligonucleotide length. Once the highlighted region results in the desired Tm, click on **Trim** to delete the non-highlighted bases. Be sure to keep the above guidelines in mind.

Note that you can further customize your primer and probe set by editing the default parameter values found under the Parameters tab. For more information on editing parameters, see *Primer Express 3.0 Software Online Help*.

Saving Primer Copy and paste the primer and probe sequences into a text document, then save for future reference. Sequences

Ordering Primers To order primers and probes, see Chapter 4, "Ordering Primers and Probes."

IMPORTANT! Before running your samples, Applied Biosystems recommends that you run control samples to verify the performance of the selected primers and probes.

¥.	Ordering Primers and Probes
Image: Arrow of the end	
Description of the end o	Overview Overview Ordering the Selected Primers and Probes See page 40

4

Overview

About This Chapter provides information on how to order your selected primer and probes.

Ordering Primers and Probes

After the Primer Express[®] Software generates the table of candidate primers and probes, you can order those that best suit your needs.

- 1. In the Primer/Probe tab, select the primer and probe set you want to order.
- **2.** Click on the **Order** tab.
- **3.** Click **I** on the toolbar to go the Applied Biosystems online store.
- 4. Log into the AB Store if you have an account, register if you are a new user.
- **Ordering Primers 1.** Below the ABI PRISM[®] Primers/Probes heading, under the TaqMan Primers and Probes heading, click **Sequence Detection Primers**.
 - **2.** In the Product Information tab, select the check box next to the volume of primers to order.
 - **3.** Below the primer option you selected, click **Customize**.
 - 4. Follow the instructions on the web page to specify any options.
 - 5. Follow the instructions on the web page to enter or copy your sequence text.
 - **6.** Type the name for the Forward Primer, press **Enter**, then copy and paste your primer sequence from either the Order tab or the Primer Probe Test Tool (in the Primer Express software).
 - **7.** Type the name for the Reverse Primer, press **Enter**, then copy and paste your primer sequence from either the Order tab or the Primer Probe Test Tool (in the Primer Express software).
 - 8. Click Continue.
 - **9.** Review your order, then click **Add to Basket**. If this completes your order (SYBR[®] Green Dye assays), click **Proceed to Checkout** and follow the instructions on the web page to complete your order. Otherwise, click **Continue Shopping** to add Green Dye or probes to your order.

- Ordering Probes 1. Above the Sequence Detection Primers heading, click the TaqMan[®] Primers & Probes link.
 - 2. Below the ABI PRISM[®] Primers/Probes heading, click the TaqMan[®] Primers & Probes link to expand the list.
 - **3.** Select **TaqMan[®] MGB Probes** or **TaqMan[®] TAMRA[™] dye Probes** (if ordering conventional probes).
 - **4.** In the Product Information tab, select the check box next to the volume of probes to order.
 - 5. Below the probe option you selected, click Customize.
 - **a.** Follow the instructions on the web page to enter or copy your sequence text. If this probe is for allelic discrimination, be sure to specify the appropriate dyes.
 - **b.** To order additional probes, follow the steps above. Otherwise, review your order, then click **Add to Basket**.
 - **c.** Click **Proceed to Checkout**, then follow the instructions on the web page to complete your order.

Notes_

4

Chapter 4 Ordering Primers and Probes Ordering Primers and Probes

Index

Α

add DNA file 9, 19, 29 allele 2, 34, 36, 37 allelic discrimination creating the document 29 allelic discrimination assay defined 2 allelic discrimination assays assigning a SNP target 30 design guidelines 35 finding primers and probes 31 manually designing the allele 1 probe 34 manually designing the allele 2 probe 36 saving primer and probe sequences 38 saving the document 33 amplicon length 12, 14, 16, 17, 22, 24, 33, 35, 37 Annotating Sequences. See Online Help anti-sense strand 2, 3, 10, 30 anti-sense strand defined 2 **Applied Biosystems** contacting viii customer feedback on documentation viii Technical Communications viii Technical Support viii

В

Batch Process Tool. See Online Help

D

document defined 2 documentation feedback viii

Е

Exporting. See Online Help

F

File format supported. See Online Help

installing Primer Express Software 4

0

Online Help 6 Ordering TaqMan® TAMRA[™] dye Probes 41 ordering primers 40 ordering probes 41 Overview 8

Ρ

primer defined 3 Primer Express Software Version 2.0 4 Primer Express Software version 2.0 5 primer length 17, 24, 37 Primer Probe Test Tool 13, 14, 15, 16, 17, 23, 24, 25, 34, 35, 36, 37, 38, 40 Printing. See Online Help probe defined 3 probe length 14, 35

Q

quantification assay 3
Quantification Assays
Manually Designing the Probe 13
Primer Design Guidelines 17, 37
quantification assays
saving the document after automatic design 12
viewing results 11
quantification document 9
Quantification Workflow 8

R

rapid assay design guidelines 2 registration code 6

S

sense strand 9, 10, 19, 20, 29, 30 sense strand defined 3 SNP 2, 29, 30, 34, 35, 36 SNP site 29, 30, 34, 35, 36 SNP site in an MGB probe 36 SNP Target 30
SNP target 30
SNP Target Tool 31
Starting and Exiting Primer Express Software 6
SYBR Green Dye Assays

Primer Guidelines 24

SYBR Green Dye assays

manually designing the forward primer 23
manually designing the primers 23
manually designing the reverse primer 25
saving primer sequences 25
viewing results 21

system requirements 3

Т

TaqMan Probe3TaqMan® MGB Probe defined3TaqMan® MGB Quantification9TaqMan® Quantification9

U

Uninstalling Primer Express Software 4

iScience. To achieve accurate, reproducible results, life scientists are taking advantage of advanced analysis systems that unite technology, informatics, and traditional laboratory research. In partnership with our customers, Applied Biosystems provides the innovative products, services, and knowledge resources that make this new, **Integrated Science** possible.

Worldwide Sales and Support

Applied Biosystems vast distribution and service network, composed of highly trained support and applications personnel, reaches 150 countries on six continents. For sales office locations and technical support, please call our local office or refer to our Web site at www.appliedbiosystems.com.

Applera is committed to providing the world's leading technology and information for life scientists. Applera Corporation consists of the Applied Biosystems and Celera Genomics businesses.

Headquarters

850 Lincoln Centre Drive Foster City, CA 94404 USA Phone: +1 650.638.5800 Toll Free (In North America): +1 800.345.5224 Fax: +1 650.638.5884

